广西南宁市第十八中学2022年中考数学押题卷含解析
展开
这是一份广西南宁市第十八中学2022年中考数学押题卷含解析,共19页。试卷主要包含了平面直角坐标系中的点P,下列运算结果为正数的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.下列计算正确的是( )
A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2
C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2
2.如图,已知垂直于的平分线于点,交于点, ,若的面积为1,则的面积是( )
A. B. C. D.
3.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )
A.12.5° B.15° C.20° D.22.5°
4.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为( )
A. B.
C. D.
5.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A.1 B.2 C.3 D.4
6.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=( )
A.1 B.2 C.3 D.4
7.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是( )
A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°
8.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是( )
A.0个 B.1个或2个
C.0个、1个或2个 D.只有1个
9.若关于x的方程=3的解为正数,则m的取值范围是( )
A.m< B.m<且m≠
C.m>﹣ D.m>﹣且m≠﹣
10.下列运算结果为正数的是( )
A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为__.
12.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.
13.Rt△ABC中,AD为斜边BC上的高,若, 则 .
14.若反比例函数y=的图象位于第一、三象限,则正整数k的值是_____.
15.数据﹣2,0,﹣1,2,5的平均数是_____,中位数是_____.
16.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.
三、解答题(共8题,共72分)
17.(8分)如图,在中,,平分,交于点,点在上,经过两点,交于点,交于点.
求证:是的切线;若的半径是,是弧的中点,求阴影部分的面积(结果保留和根号).
18.(8分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.
19.(8分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.
20.(8分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)
21.(8分)计算: .
22.(10分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:
A.二维码过闸 B.现金购票 C.市名卡过闸 D.银联闪付
某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).
23.(12分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)
设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题
(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;
(2)当35<x<50时,选取哪种方式能节省上网费,请说明理由
24.在一个不透明的盒子中,装有3个分别写有数字1,2,3的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.
(1)用列表法或树状图法写出所有可能出现的结果;
(2)求两次取出的小球上的数字之和为奇数的概率P.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
A、原式=a2﹣4,不符合题意;
B、原式=a2﹣a﹣2,不符合题意;
C、原式=a2+b2+2ab,不符合题意;
D、原式=a2﹣2ab+b2,符合题意,
故选D
2、B
【解析】
先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.
【详解】
∵BD平分∠ABC,
∴∠ABD=∠EBD,
∵AE⊥BD,
∴∠ADB=∠EDB=90°,
又∵BD=BD,
∴△ABD≌△EBD,
∴AD=ED,
∵,的面积为1,
∴S△AEC=S△ABC=,
又∵AD=ED,
∴S△CDE= S△AEC=,
故选B.
【点睛】
本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.
3、B
【解析】
解:连接OB,
∵四边形ABCO是平行四边形,
∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,
∴△AOB为等边三角形,
∵OF⊥OC,OC∥AB,
∴OF⊥AB,
∴∠BOF=∠AOF=30°,
由圆周角定理得∠BAF=∠BOF=15°
故选:B
4、B
【解析】
根据第二象限中点的特征可得: ,
解得: .
在数轴上表示为:
故选B.
考点:(1)、不等式组;(2)、第一象限中点的特征
5、B
【解析】
分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.
详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
②当x=﹣1时,a﹣b+c=0,故②错误;
③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
∴A(3,0),
故当y>0时,﹣1<x<3,故④正确.
故选B.
点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.
6、B
【解析】
根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.
【详解】
∴∠ADC=∠BEC=90°.
∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,
∠DCA=∠CBE,
在△ACD和△CBE中,,
∴△ACD≌△CBE(AAS),
∴CE=AD=3,CD=BE=1,
DE=CE−CD=3−1=2,
故答案选:B.
【点睛】
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
7、B
【解析】
延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;
【详解】
延长AC交DE于点F.
A. ∵∠α+∠β=180°,∠β=∠1+90°,
∴∠α=90°-∠1,即∠α≠∠1,
∴不能使得AB∥DE;
B. ∵∠β﹣∠α=90°,∠β=∠1+90°,
∴∠α=∠1,
∴能使得AB∥DE;
C.∵∠β=3∠α,∠β=∠1+90°,
∴3∠α=90°+∠1,即∠α≠∠1,
∴不能使得AB∥DE;
D.∵∠α+∠β=90°,∠β=∠1+90°,
∴∠α=-∠1,即∠α≠∠1,
∴不能使得AB∥DE;
故选B.
【点睛】
本题考查了平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.
8、C
【解析】
根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.
【详解】
∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,
∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,
当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,
当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,
故选C.
【点睛】
考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.
9、B
【解析】
解:去分母得:x+m﹣3m=3x﹣9,
整理得:2x=﹣2m+9,解得:x=,
已知关于x的方程=3的解为正数,
所以﹣2m+9>0,解得m<,
当x=3时,x==3,解得:m=,
所以m的取值范围是:m<且m≠.
故答案选B.
10、B
【解析】
分别根据有理数的加、减、乘、除运算法则计算可得.
【详解】
解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;
B、1﹣(﹣2)=1+2=3,结果为正数;
C、1×(﹣2)=﹣1×2=﹣2,结果为负数;
D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;
故选B.
【点睛】
本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1≤a≤1
【解析】
根据y的取值范围可以求得相应的x的取值范围.
【详解】
解:∵二次函数y=x1﹣4x+4=(x﹣1)1,
∴该函数的顶点坐标为(1,0),对称轴为:x=﹣,
把y=0代入解析式可得:x=1,
把y=1代入解析式可得:x1=3,x1=1,
所以函数值y的取值范围为0≤y≤1时,自变量x的范围为1≤x≤3,
故可得:1≤a≤1,
故答案为:1≤a≤1.
【点睛】
此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
12、3
【解析】
分析:
由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:,解此方程即可求得△EFC的面积.
详解:
∵在△ABC中,点E,F分别是AC,BC的中点,
∴EF是△ABC的中位线,
∴EF∥AB,EF:AB=1:2,
∴△CEF∽△CAB,
∴S△CEF:S△CAB=1:4,
设S△CEF=x,
∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,
∴,
解得:,
经检验:是所列方程的解.
故答案为:3.
点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.
13、
【解析】
利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.
【详解】
如图,
∵∠CAB=90°,且AD⊥BC,
∴∠ADB=90°,
∴∠CAB=∠ADB,且∠B=∠B,
∴△CAB∽△ADB,
∴(AB:BC)1=△ADB:△CAB,
又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,
∴AB:BC=1:1.
14、1.
【解析】
由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可.
【详解】
解:∵反比例函数的图象在一、三象限,
∴2﹣k>0,即k<2.
又∵k是正整数,
∴k的值是:1.
故答案为:1.
【点睛】
本题考查了反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
15、0.8 0
【解析】
根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
平均数=(−2+0−1+2+5)÷5=0.8;
把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,
故这组数据的中位数是:0.
故答案为0.8;0.
【点睛】
本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.
16、40cm
【解析】
首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.
【详解】
∵圆锥的底面直径为60cm,
∴圆锥的底面周长为60πcm,
∴扇形的弧长为60πcm,
设扇形的半径为r,
则=60π,
解得:r=40cm,
故答案为:40cm.
【点睛】
本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2)
【解析】
(1)连接OD,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD,即可证明OD//AC,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧弧弧,即可证明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的长,利用S阴影=S△BOD-S扇形DOE即可得答案.
【详解】
(1)连接
∵平分,
∴,
∵ ,
∴,
∴,
∴OD//AC,
∴,
∴
又是的半径,
∴是的切线
(2)由题意得
∵是弧的中点
∴弧弧
∵
∴弧弧
∴弧弧弧
∴
在中
∵
∴
.
【点睛】
本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.
18、 (1)证明见解析(2)四边形AFBE是菱形
【解析】
试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;
(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.
试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);
(2)解:四边形AFBE是菱形,理由如下:
∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.
考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.
19、 (1) (2)△ABC∽△DEF.
【解析】
(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;
(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.
【详解】
(1)
故答案为
(2)△ABC∽△DEF.
证明:∵在4×4的正方形方格中,
∴∠ABC=∠DEF.
∵
∴
∴△ABC∽△DEF.
【点睛】
考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.
20、37
【解析】
试题分析:过点作交于点.构造直角三角形,在中,计算出,在中, 计算出.
试题解析:如图所示:过点作交于点.
在中,
又∵在中,
答:的长度为
21、10
【解析】
【分析】先分别进行0次幂的计算、负指数幂的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可.
【详解】原式=1+9-+4
=10-+
=10.
【点睛】本题考查了实数的混合运算,涉及到0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.
22、 (1)600人(2)
【解析】
(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;
(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.
【详解】
(1)(人),∴最喜欢方式A的有600人
(2)列表法:
A
B
C
A
A,A
A,B
A,C
B
B,A
B,B
B,C
C
C,A
C,B
C,C
树状法:
∴(同一种购票方式)
【点睛】
本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
23、(1),;(2)当35<x<1时,选择B方式能节省上网费,见解析.
【解析】
(1)根据两种方式的收费标准,进行分类讨论即可求解;
(2)当35<x<1时,计算出y1-y2的值,即可得出答案.
【详解】
解:(1)由题意得:;
即;
;
即;
(2)选择B方式能节省上网费
当35<x<1时,有y1=3x-45,y2=1.
:y1-y2=3x-45-1=3x-2.记y=3x-2
因为3>4,有y随x的增大而增大
当x=35时,y=3.
所以当35<x<1时,有y>3,即y>4.
所以当35<x<1时,选择B方式能节省上网费
【点睛】
此题考查了一次函数的应用,注意根据图表得出解题需要的信息,难度一般,正确理解收费标准求出函数解析式是解题的关键.
24、 (1见解析;(2).
【解析】
(1)根据题意先画出树状图,得出所有可能出现的结果数;
(2)根据(1)可得共有9种情况,两次取出小球上的数字和为奇数的情况,再根据概率公式即可得出答案.
【详解】
(1)列表得,
(2)两次取出的小球上的数字之和为奇数的共有4种,
∴P两次取出的小球上数字之和为奇数的概率P=.
【点睛】
此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
相关试卷
这是一份广西省南宁市2022-2023学年中考数学押题卷含解析,共17页。
这是一份广西南宁市兴宁区新兴校2022年中考押题数学预测卷含解析,共21页。试卷主要包含了下列运算中正确的是,二次函数y=3,若点A,对于数据,点M等内容,欢迎下载使用。
这是一份广西南宁市武鸣区市级名校2022年中考押题数学预测卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。