广东省广州市育才实验中学重点中学2022年中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )
A.40° B.45° C.50° D.55°
2.如图,是直角三角形,,,点在反比例函数的图象上.若点在反比例函数的图象上,则的值为( )
A.2 B.-2 C.4 D.-4
3.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )
A. B. C. D.
4.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )
A. B. C. D.
5.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是抛物线上的两点,则y1<y2.其中说法正确的有( )
A.②③④ B.①②③ C.①④ D.①②④
6.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则( )
①B地在C地的北偏西50°方向上;
②A地在B地的北偏西30°方向上;
③cos∠BAC=;
④∠ACB=50°.其中错误的是( )
A.①② B.②④ C.①③ D.③④
7.若关于的方程的两根互为倒数,则的值为( )
A. B.1 C.-1 D.0
8.不等式组的解在数轴上表示为( )
A. B. C. D.
9.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是
A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D
10.下列4个数:,,π,()0,其中无理数是( )
A. B. C.π D.()0
二、填空题(共7小题,每小题3分,满分21分)
11.分式方程=1的解为_____
12.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为1,即PS+SQ=1或PT+TQ=1.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(1,﹣3),C(﹣1,﹣1),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为_____.
13.使得关于x的分式方程的解为负整数,且使得关于x的不等式组有且仅有5个整数解的所有k的和为_____.
14.分解因式:a3-12a2+36a=______.
15.=________
16.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.
17.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.
求m和b的值;直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动.设点P的运动时间为t秒.
①若点P在线段DA上,且△ACP的面积为10,求t的值;
②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.
19.(5分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?
20.(8分)已知A、B、C三地在同一条路上,A地在B地的正南方3千米处,甲、乙两人分别从A、B两地向正北方向的目的地C匀速直行,他们分别和A地的距离s(千米)与所用的时间t(小时)的函数关系如图所示.
(1)图中的线段l1是 (填“甲”或“乙”)的函数图象,C地在B地的正北方向 千米处;
(2)谁先到达C地?并求出甲乙两人到达C地的时间差;
(3)如果速度慢的人在两人相遇后立刻提速,并且比先到者晚1小时到达C地,求他提速后的速度.
21.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.
队别
平均分
中位数
方差
合格率
优秀率
七年级
6.7
m
3.41
90%
n
八年级
7.1
7.5
1.69
80%
10%
(1)请依据图表中的数据,求a、b的值;
(2)直接写出表中的m、n的值;
(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.
22.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点.
(1)求二次函数的表达式;
(2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;
(3)在y轴上是否存在点F,使∠PDF与∠ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由.
23.(12分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?
24.(14分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.
求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题分析:如图,
连接OC,
∵AO∥DC,
∴∠ODC=∠AOD=70°,
∵OD=OC,
∴∠ODC=∠OCD=70°,
∴∠COD=40°,
∴∠AOC=110°,
∴∠B=∠AOC=55°.
故选D.
考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质
2、D
【解析】
要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.
【详解】
过点、作轴,轴,分别于、,
设点的坐标是,则,,
,
,
,
,
,
,
,
,
,,
因为点在反比例函数的图象上,则,
点在反比例函数的图象上,点的坐标是,
.
故选:.
【点睛】
本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.
3、C
【解析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:
【详解】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:
A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;
B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;
C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;
D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.
故选C
【点睛】
考核知识点:正方体的表面展开图.
4、C
【解析】
易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得= ,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.
【详解】
∵AB、CD、EF都与BD垂直,
∴AB∥CD∥EF,
∴△DEF∽△DAB,△BEF∽△BCD,
∴= ,=,
∴+=+==1.
∵AB=1,CD=3,
∴+=1,
∴EF=.
故选C.
【点睛】
本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.
5、D
【解析】
根据图象得出a<0, a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y1),(,y2)到对称轴的距离即可判断④.
【详解】
∵二次函数的图象的开口向下,
∴a<0,
∵二次函数的图象y轴的交点在y轴的正半轴上,
∴c>0,
∵二次函数图象的对称轴是直线x=,
∴a=-b,
∴b>0,
∴abc<0,故①正确;
∵a=-b, ∴a+b=0,故②正确;
把x=2代入抛物线的解析式得,
4a+2b+c=0,故③错误;
∵ ,
故④正确;
故选D..
【点睛】
本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.
6、B
【解析】
先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.
【详解】
如图所示,
由题意可知,∠1=60°,∠4=50°,
∴∠5=∠4=50°,即B在C处的北偏西50°,故①正确;
∵∠2=60°,
∴∠3+∠7=180°﹣60°=120°,即A在B处的北偏西120°,故②错误;
∵∠1=∠2=60°,
∴∠BAC=30°,
∴cos∠BAC=,故③正确;
∵∠6=90°﹣∠5=40°,即公路AC和BC的夹角是40°,故④错误.
故选B.
【点睛】
本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.
7、C
【解析】
根据已知和根与系数的关系得出k2=1,求出k的值,再根据原方程有两个实数根,即可求出符合题意的k的值.
【详解】
解:设、是的两根,
由题意得:,
由根与系数的关系得:,
∴k2=1,
解得k=1或−1,
∵方程有两个实数根,
则,
当k=1时,,
∴k=1不合题意,故舍去,
当k=−1时,,符合题意,
∴k=−1,
故答案为:−1.
【点睛】
本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.
8、C
【解析】
先解每一个不等式,再根据结果判断数轴表示的正确方法.
【详解】
解:由不等式①,得3x>5-2,解得x>1,
由不等式②,得-2x≥1-5,解得x≤2,
∴数轴表示的正确方法为C.
故选C.
【点睛】
考核知识点:解不等式组.
9、B
【解析】
先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.
【详解】
解:∵直径CD⊥弦AB,
∴弧AD =弧BD,
∴∠C=∠BOD.
故选B.
【点睛】
本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
10、C
【解析】
=3,是无限循环小数,π是无限不循环小数,,所以π是无理数,故选C.
二、填空题(共7小题,每小题3分,满分21分)
11、x=0.1
【解析】
分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.
详解:方程两边都乘以2(x2﹣1)得,
8x+2﹣1x﹣1=2x2﹣2,
解得x1=1,x2=0.1,
检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,
当x=1时,x﹣1=0,
所以x=0.1是方程的解,
故原分式方程的解是x=0.1.
故答案为:x=0.1
点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
12、(1,﹣2).
【解析】
若设M(x,y),则由题目中对“实际距离”的定义可得方程组:
3-x+1-y=y+1+x+1=1-x+3+y,
解得:x=1,y=-2,
则M(1,-2).
故答案为(1,-2).
13、12.1
【解析】
依据分式方程=1的解为负整数,即可得到k>,k≠1,再根据不等式组有1个整数解,即可得到0≤k<4,进而得出k的值,从而可得符合题意的所有k的和.
【详解】
解分式方程=1,可得x=1-2k,
∵分式方程=1的解为负整数,
∴1-2k<0,
∴k>,
又∵x≠-1,
∴1-2k≠-1,
∴k≠1,
解不等式组,可得,
∵不等式组有1个整数解,
∴1≤<2,
解得0≤k<4,
∴<k<4且k≠1,
∴k的值为1.1或2或2.1或3或3.1,
∴符合题意的所有k的和为12.1,
故答案为12.1.
【点睛】
本题考查了解一元一次不等式组、分式方程的解,解题时注意分式方程中的解要满足分母不为0的情况.
14、a(a-6)2
【解析】
原式提取a,再利用完全平方公式分解即可.
【详解】
原式=a(a2-12a+36)=a(a-6)2,
故答案为a(a-6)2
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
15、13
【解析】
=2+9-4+6
=13.
故答案是:13.
16、.
【解析】
如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.
【详解】
如图,
∵四边形CDEF是正方形,
∴CD=ED,DE∥CF,
设ED=x,则CD=x,AD=12-x,
∵DE∥CF,
∴∠ADE=∠C,∠AED=∠B,
∴△ADE∽△ACB,
∴=,
∴=,
∴x=,
故答案为.
【点睛】
本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.
17、-1
【解析】
根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.
【详解】
解:∵方程3x1-5x+1=0的一个根是a,
∴3a1-5a+1=0,
∴3a1-5a=-1,
∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.
故答案是:-1.
【点睛】
此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.
三、解答题(共7小题,满分69分)
18、(1)4,5;(2)①7;②4或 或或8.
【解析】
分别令可得b和m的值;
根据的面积公式列等式可得t的值;
存在,分三种情况:
当时,如图1,当时,如图2,当时,如图3,分别求t的值即可.
【详解】
把点代入直线中得:,
点,
直线过点C,
,;
由题意得:,
中,当时,,
,
,
中,当时,,
,
,
,
的面积为10,
,
,
则t的值7秒;
存在,分三种情况:
当时,如图1,过C作于E,
,
,
即;
当时,如图2,
,
,
;
当时,如图3,
,
,
,
,
,
,即;
综上,当秒或秒或秒或8秒时,为等腰三角形.
【点睛】
本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.
19、(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.
【解析】
(1)根据“总利润=每件的利润×每天的销量”列方程求解可得;
(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.
【详解】
解:(1)依题意得:(100﹣80﹣x)(100+10x)=2160,
即x2﹣10x+16=0,
解得:x1=2,x2=8,
经检验:x1=2,x2=8,
答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;
(2)依题意得:y=(100﹣80﹣x)(100+10x)
=﹣10x2+100x+2000
=﹣10(x﹣5)2+2250,
∵﹣10<0,
∴当x=5时,y取得最大值为2250元.
答:y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.
【点睛】
本题考查二次函数的应用和一元二次方程的应用,解题关键是由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式.
20、(1)乙;3;(2)甲先到达,到达目的地的时间差为小时;(3)速度慢的人提速后的速度为千米/小时.
【解析】
分析:
(1)根据题意结合所给函数图象进行判断即可;
(2)由所给函数图象中的信息先求出二人所对应的函数解析式,再由解析式结合图中信息求出二人到达C地的时间并进行比较、判断即可得到本问答案;
(3)根据图象中的信息结合(2)中的结论进行解答即可.
详解:
(1)由题意结合图象中的信息可知:图中线段l1是乙的图象;C地在B地的正北方6-3=3(千米)处.
(2)甲先到达.
设甲的函数解析式为s=kt,则有4=t,
∴s=4t.
∴当s=6时,t=.
设乙的函数解析式为s=nt+3,则有4=n+3,即n=1.
∴乙的函数解析式为s=t+3.
∴当s=6时,t=3.
∴甲、乙到达目的地的时间差为:(小时).
(3)设提速后乙的速度为v千米/小时,
∵相遇处距离A地4千米,而C地距A地6千米,
∴相遇后需行2千米.
又∵原来相遇后乙行2小时才到达C地,
∴乙提速后2千米应用时1.5小时.
即,解得: ,
答:速度慢的人提速后的速度为千米/小时.
点睛:本题考查的是由函数图象中获取相关信息来解决问题的能力,解题的关键是结合题意弄清以下两点:(1)函数图象上点的横坐标和纵坐标各自所表示是实际意义;(2)图象中各关键点(起点、终点、交点和转折点)的实际意义.
21、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.
【解析】
试题分析:(1)根据题中数据求出a与b的值即可;
(2)根据(1)a与b的值,确定出m与n的值即可;
(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.
试题解析:(1)根据题意得:
解得a=5,b=1;
(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;
优秀率为=20%,即n=20%;
(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,
故八年级队比七年级队成绩好.
考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.
22、 (1) y=﹣x2﹣3x+4;(2)当时,S有最大值;(3)点P的横坐标为﹣2或1或或.
【解析】
(1)将代入,列方程组求出b、c的值即可;
(2)连接PD,作轴交于点G,求出直线的解析式为,设
,则,
,,
当时,S有最大值;
(3)过点P作轴,设,则,
,
根据,列出关于x的方程,解之即可.
【详解】
解:(1)将、代入,
,
∴二次函数的表达式;
(2)连接,作轴交于点,如图所示.
在中,
令y=0,得,
∴直线AD的解析式为.
设,则,
,
∴.
,
∴当时,S有最大值.
(3)过点P作轴,设,则,,
,
即
,
当点P在y轴右侧时,,
,或,
(舍去)或(舍去),
当点P在y轴左侧时,x<0,
,或,
(舍去),或(舍去),
综上所述,存在点F,使与互余点P的横坐标为或或或.
【点睛】
本题是二次函数,熟练掌握相似三角形的判定与性质、平行四边形的性质以及二次函数图象的性质等是解题的关键.
23、(1)A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装2套.
【解析】
试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.
试题解析:
(1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.
根据题意得:=2×,
解得:x=7.5,
经检验,x=7.5为分式方程的解,
∴x+2.5=1.
答:A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元.
(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,
根据题意得:(13﹣1)a+(9.5﹣7.5)(2a+4)>120,
解得:a>16,
∵a为正整数,
∴a取最小值2.
答:最少购进A品牌工具套装2套.
点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.
24、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时
【解析】
(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得 AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;
(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.
【详解】
(1)如图,过点P作PE⊥MN,垂足为E,
由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,
∵PE=30海里,∴AP=60海里,
∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE= 45°,
∴PE=EB=30海里,
在Rt△PEB中,BP==30≈42海里,
故AP=60海里,BP=42(海里);
(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,
根据题意,得,
解得x=20,
经检验,x=20是原方程的解,
甲船的速度为1.2x=1.2×20=24(海里/时).,
答:甲船的速度是24海里/时,乙船的速度是20海里/时.
【点睛】
本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.
广州市重点中学2021-2022学年中考数学考前最后一卷含解析: 这是一份广州市重点中学2021-2022学年中考数学考前最后一卷含解析,共18页。试卷主要包含了已知点P等内容,欢迎下载使用。
2022年商洛市重点中学中考考前最后一卷数学试卷含解析: 这是一份2022年商洛市重点中学中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了已知二次函数y=等内容,欢迎下载使用。
2022年潍坊市重点中学中考考前最后一卷数学试卷含解析: 这是一份2022年潍坊市重点中学中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了如图所示,下列各式计算正确的是,下列计算正确的是等内容,欢迎下载使用。