第二附属中学2021-2022学年中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列运算正确的是( )
A.3a2﹣2a2=1 B.a2•a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b2
2.下列运算正确的( )
A.(b2)3=b5 B.x3÷x3=x C.5y3•3y2=15y5 D.a+a2=a3
3.如图是正方体的表面展开图,则与“前”字相对的字是( )
A.认 B.真 C.复 D.习
4.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=( )
A.3﹣ B.(+1) C.﹣1 D.(﹣1)
5.已知x2+mx+25是完全平方式,则m的值为( )
A.10 B.±10 C.20 D.±20
6.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为( )
A.2 B.4 C.6 D.8
8.下面的几何体中,主视图为圆的是( )
A. B. C. D.
9.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )
A. B. C. D.
10.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )
A.15 B.17 C.19 D.24
11.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是( )
A.①②都对 B.①②都错 C.①对②错 D.①错②对
12.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2 B.m<﹣2
C.m>2 D.m<2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是_____.
14.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.
15.因式分解:(a+1)(a﹣1)﹣2a+2=_____.
16.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当扇形AOB的半径为2时,阴影部分的面积为__________.
17.如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____.
18.阅读以下作图过程:
第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);
第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);
第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.
请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.
20.(6分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:
(1)这四个班参与大赛的学生共__________人;
(2)请你补全两幅统计图;
(3)求图1中甲班所对应的扇形圆心角的度数;
(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.
21.(6分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.
22.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
23.(8分)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.
求证:AD•CE=DE•DF;
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.
24.(10分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.
25.(10分)在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.
求证:;
求证:四边形BDFG为菱形;
若,,求四边形BDFG的周长.
26.(12分)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.
27.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.
(1)求证:直线FG是⊙O的切线;
(2)若AC=10,cosA=,求CG的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据合并同类项法则,可知3a2﹣2a2= a2,故不正确;
根据同底数幂相乘,可知a2•a3=a5,故不正确;
根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;
根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.
故选D.
【详解】
请在此输入详解!
2、C
【解析】
分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.
详解:A、(b2)3=b6,故此选项错误;
B、x3÷x3=1,故此选项错误;
C、5y3•3y2=15y5,正确;
D、a+a2,无法计算,故此选项错误.
故选C.
点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.
3、B
【解析】
分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.
详解:由图形可知,与“前”字相对的字是“真”.
故选B.
点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.
4、C
【解析】
根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值.
【详解】
解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;
则BC=2×=-1.
故答案为:-1.
【点睛】
本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍.
5、B
【解析】
根据完全平方式的特点求解:a2±2ab+b2.
【详解】
∵x2+mx+25是完全平方式,
∴m=±10,
故选B.
【点睛】
本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.
6、D
【解析】
先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.
【详解】
∵点A(a,-b)在第一象限内,
∴a>0,-b>0,
∴b<0,
∴点B((a,b)在第四象限,
故选D.
【点睛】
本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
7、B
【解析】
证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.
【详解】
∵∠A=∠A,∠ADC=∠ACB,
∴△ADC∽△ACB,
∴,
∴AC2=AD•AB=2×8=16,
∵AC>0,
∴AC=4,
故选B.
【点睛】
本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.
8、C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
B、的主视图是正方形,故B不符合题意;
C、的主视图是圆,故C符合题意;
D、的主视图是三角形,故D不符合题意;
故选C.
考点:简单几何体的三视图.
9、A
【解析】
∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
∴BC== ,
则cosB== ,
故选A
10、D
【解析】
由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.
【详解】
解:解:∵第①个图案有三角形1个,
第②图案有三角形1+3=4个,
第③个图案有三角形1+3+4=8个,
…
∴第n个图案有三角形4(n﹣1)个(n>1时),
则第⑦个图中三角形的个数是4×(7﹣1)=24个,
故选D.
【点睛】
本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an=4(n﹣1)是解题的关键.
11、A
【解析】
由已知,AB=a,AB+BC=5,当E在BC上时,如图,可得△ABE∽△ECF,继而根据相似三角形的性质可得y=﹣,根据二次函数的性质可得﹣,由此可得a=3,继而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得当E在AB上时,y=时,x=,据此即可作出判断.
【详解】
解:由已知,AB=a,AB+BC=5,
当E在BC上时,如图,
∵E作EF⊥AE,
∴△ABE∽△ECF,
∴,
∴,
∴y=﹣,
∴当x=时,﹣,
解得a1=3,a2=(舍去),
∴y=﹣,
当y=时,=﹣,
解得x1=,x2=,
当E在AB上时,y=时,
x=3﹣=,
故①②正确,
故选A.
【点睛】
本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键.
12、B
【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
【详解】
∵函数的图象在其象限内y的值随x值的增大而增大,
∴m+1<0,
解得m<-1.
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
由△ABC中,点D、E分别在边AB、BC上,DE∥AC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.
【详解】
解:∵DE∥AC,
∴DB:AB=BE:BC,
∵DB=4,AB=6,BE=3,
∴4:6=3:BC,
解得:BC=,
∴EC=BC﹣BE=﹣3=.
故答案为.
【点睛】
考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
14、48°
【解析】
连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.
【详解】
连接OA,
∵五边形ABCDE是正五边形,
∴∠AOB==72°,
∵△AMN是正三角形,
∴∠AOM==120°,
∴∠BOM=∠AOM-∠AOB=48°,
故答案为48°.
点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.
15、(a﹣1)1.
【解析】
提取公因式(a−1),进而分解因式得出答案.
【详解】
解:(a+1)(a﹣1)﹣1a+1
=(a+1)(a﹣1)﹣1(a﹣1)
=(a﹣1)(a+1﹣1)
=(a﹣1)1.
故答案为:(a﹣1)1.
【点睛】
此题主要考查了提取公因式法分解因式,找出公因式是解题关键.
16、π﹣1
【解析】
根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.
【详解】
连接OC
∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,
∴∠COD=45°,
∴OC=CD=1 ,
∴CD=OD=1,
∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积
= ﹣×11
=π﹣1.
故答案为π﹣1.
【点睛】
本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度.
17、4或4.
【解析】
①当AF<AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过E作EH⊥MN于H,由矩形的性质得到MH=AE=2,根据勾股定理得到A′H=,根据勾股定理列方程即可得到结论;②当AF>AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过A′作HG∥BC交AB于G,交CD于H,根据矩形的性质得到DH=AG,HG=AD=6,根据勾股定理即可得到结论.
【详解】
①当AF<AD时,如图1,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,
则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
设MN是BC的垂直平分线,
则AM=AD=3,
过E作EH⊥MN于H,
则四边形AEHM是矩形,
∴MH=AE=2,
∵A′H=,
∴A′M=,
∵MF2+A′M2=A′F2,
∴(3-AF)2+()2=AF2,
∴AF=2,
∴EF==4;
②当AF>AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,
则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
设MN是BC的垂直平分线,
过A′作HG∥BC交AB于G,交CD于H,
则四边形AGHD是矩形,
∴DH=AG,HG=AD=6,
∴A′H=A′G=HG=3,
∴EG==,
∴DH=AG=AE+EG=3,
∴A′F==6,
∴EF==4,
综上所述,折痕EF的长为4或4,
故答案为:4或4.
【点睛】
本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键.
18、作图见解析,
【解析】
解:如图,点M即为所求.连接AC、BC.由题意知:AB=4,BC=1.∵AB为圆的直径,∴∠ACB=90°,则AM=AC===,∴点M表示的数为.故答案为.
点睛:本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、技术改进后每天加工1个零件.
【解析】
分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.
详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,
根据题意可得, 解得x=100,
经检验x=100是原方程的解,则改进后每天加工1.
答:技术改进后每天加工1个零件.
点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.
20、(1)100;(2)见解析;(3)108°;(4)1250.
【解析】
试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;
(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;
(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;
(4)根据样本估计总体,可得答案.
试题解析:(1)这四个班参与大赛的学生数是:
30÷30%=100(人);
故答案为100;
(2)丁所占的百分比是:×100%=35%,
丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,
则丙班得人数是:100×15%=15(人);
如图:
(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;
(4)根据题意得:2000×=1250(人).
答:全校的学生中参与这次活动的大约有1250人.
考点:条形统计图;扇形统计图;样本估计总体.
21、(1)见解析;(2)四边形BFGN是菱形,理由见解析.
【解析】
(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;
(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.
【详解】
(1)证明:过F作FH⊥BE于H点,
在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,
所以四边形BHFC为矩形,
∴CF=BH,
∵BF=EF,FH⊥BE,
∴H为BE中点,
∴BE=2BH,
∴BE=2CF;
(2)四边形BFGN是菱形.
证明:
∵将线段EF绕点F顺时针旋转90°得FG,
∴EF=GF,∠GFE=90°,
∴∠EFH+∠BFH+∠GFB=90°
∵BN∥FG,
∴∠NBF+∠GFB=180°,
∴∠NBA+∠ABC+∠CBF+∠GFB=180°,
∵∠ABC=90°,
∴∠NBA+∠CBF+∠GFB=180°−90°=90°,
由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,
∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,
由BHFC是矩形可得HF=BC,
∵BC=AB,∴HF=AB,
在△ABN和△HFE中,,
∴△ABN≌△HFE,
∴NB=EF,
∵EF=GF,
∴NB=GF,
又∵NB∥GF,
∴NBFG是平行四边形,
∵EF=BF,∴NB=BF,
∴平行四边NBFG是菱形.
点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.
22、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.
【解析】
【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;
(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,
(3)根据勾股定理逆定理解答即可.
【详解】(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△A2B2C2即为所求;
(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,
即OB2+OA12=A1B2,
所以三角形的形状为等腰直角三角形.
【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
23、 (1)见解析;(2)见解析.
【解析】
连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线,若证AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一问中只能证得∠EDC=∠DAF=90°,所以在第二问中只要证得∠DEC=∠ADF即可解答此题.
【详解】
(1)连接AF,
∵DF是⊙O的直径,
∴∠DAF=90°,
∴∠F+∠ADF=90°,
∵∠F=∠ABD,∠ADG=∠ABD,
∴∠F=∠ADG,
∴∠ADF+∠ADG=90°
∴直线CD是⊙O的切线
∴∠EDC=90°,
∴∠EDC=∠DAF=90°;
(2)选取①完成证明
∵直线CD是⊙O的切线,
∴∠CDB=∠A.
∵∠CDB=∠CEB,
∴∠A=∠CEB.
∴AD∥EC.
∴∠DEC=∠ADF.
∵∠EDC=∠DAF=90°,
∴△ADF∽△DEC.
∴AD:DE=DF:EC.
∴AD•CE=DE•DF.
【点睛】
此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.
24、(1)详见解析;(2)详见解析.
【解析】
(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.
(2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.
【详解】
解:(1)如图,及为所求.
(2)连接.
∵是的切线,
∴,
∴,
即,
∵是直径,
∴,
∴,
∵,
∴,
∴,
又
∴∽
∴
∴.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.
25、(1)证明见解析(2)证明见解析(3)1
【解析】
利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,
利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,
设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可.
【详解】
证明:,,
,
又为AC的中点,
,
又,
,
证明:,,
四边形BDFG为平行四边形,
又,
四边形BDFG为菱形,
解:设,则,,
在中,,
解得:,舍去,
,
菱形BDFG的周长为1.
【点睛】
本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.
26、详见解析
【解析】
由等边三角形的性质得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD,证明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出结论.
【详解】
证明:∵△ABC,△DEB都是等边三角形,
∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,
∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,
即∠ABE=∠CBD,
在△ABE和△CBD中,
∵AB=CB,
∠ABE=∠CBD,
BE=BD,,
∴△ABE≌△CBD(SAS),
∴∠BAE=∠BCD=60°,
∴∠BAE=∠BAC,
∴AB平分∠EAC.
【点睛】
本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.
27、(3)证明见试题解析;(3)3.
【解析】
试题分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直线FG是⊙O的切线.
(3)先得出△ODF∽△AGF,再由cosA=,得出cos∠DOF=;然后求出OF、AF的值,即可求出AG、CG的值.
试题解析:(3)如图3,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半径,∴直线FG是⊙O的切线;
(3)如图3,∵AB=AC=30,AB是⊙O的直径,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴,∵cosA=,∴cos∠DOF=,∴OF===,∴AF=AO+OF==,∴,解得AG=7,∴CG=AC﹣AG=30﹣7=3,即CG的长是3.
考点:3.切线的判定;3.相似三角形的判定与性质;3.综合题.
2021-2022学年山西省(朔州地区)中考数学适应性模拟试题含解析: 这是一份2021-2022学年山西省(朔州地区)中考数学适应性模拟试题含解析,共19页。试卷主要包含了下列图形不是正方体展开图的是等内容,欢迎下载使用。
2021-2022学年林芝重点名校中考数学适应性模拟试题含解析: 这是一份2021-2022学年林芝重点名校中考数学适应性模拟试题含解析,共17页。试卷主要包含了如图,计算的结果是,如图,点A,B在双曲线y=等内容,欢迎下载使用。
2021-2022学年江苏省扬州大附属中学中考适应性考试数学试题含解析: 这是一份2021-2022学年江苏省扬州大附属中学中考适应性考试数学试题含解析,共19页。试卷主要包含了下列计算正确的是,下列各数中,最小的数是,若分式的值为0,则x的值为等内容,欢迎下载使用。