2021-2022学年北京三十一中中考数学适应性模拟试题含解析
展开1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是
A. B. C. D.
2.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )
A.1B.2C.5D.6
3.估计-1的值在( )
A.0到1之间B.1到2之间C.2到3之间D.3至4之间
4.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:
甲:①连接OP,作OP的垂直平分线l,交OP于点A;
②以点A为圆心、OA为半径画弧、交⊙O于点M;
③作直线PM,则直线PM即为所求(如图1).
乙:①让直角三角板的一条直角边始终经过点P;
②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;
③作直线PM,则直线PM即为所求(如图2).
对于两人的作业,下列说法正确的是( )
A.甲乙都对B.甲乙都不对
C.甲对,乙不对D.甲不对,已对
5.下列说法:
① ;
②数轴上的点与实数成一一对应关系;
③﹣2是的平方根;
④任何实数不是有理数就是无理数;
⑤两个无理数的和还是无理数;
⑥无理数都是无限小数,
其中正确的个数有( )
A.2个B.3个C.4个D.5个
6.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为( )
A.2πB.4πC.6πD.8π
7.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为( )
A.800sinα米B.800tanα米C.米D.米
8.下列命题是真命题的是( )
A.如实数a,b满足a2=b2,则a=b
B.若实数a,b满足a<0,b<0,则ab<0
C.“购买1张彩票就中奖”是不可能事件
D.三角形的三个内角中最多有一个钝角
9.下列命题正确的是( )
A.对角线相等的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的平行四边形是菱形
D.对角线互相垂直且相等的四边形是正方形
10.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A.(,)B.(2,)C.(,)D.(,3﹣)
11.如图,与∠1是内错角的是( )
A.∠2 B.∠3
C.∠4 D.∠5
12.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为( )
A.686×104 B.68.6×105 C.6.86×106 D.6.86×105
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则 (用含k的代数式表示).
14.分解因式:=____
15.在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是_________.
16.如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值范围是______.
17.如图,的半径为,点,,,都在上,,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_____.(结果保留)
18.若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
20.(6分)如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.
(1)求证:BH=EH;
(2)如图2,当点G落在线段BC上时,求点B经过的路径长.
21.(6分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.
(1)求k,a,b的值;
(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.
22.(8分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:
(1)若商场预计进货款为3500元,则这两种台灯各进多少盏.
(2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式.
(3)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.
23.(8分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.
24.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cs75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
25.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.
26.(12分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示
该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元.
(1)该公司计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?
27.(12分)如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.
(1)若∠G=48°,求∠ACB的度数;
(1)若AB=AE,求证:∠BAD=∠COF;
(3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=,求的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A。
【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,
∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。
此时,由AB=2,根据勾股定理,得弦AP=x=。
∴当x=时,△APO的面积y最大,最大面积为y=。从而可排除B,D选项。
又∵当AP=x=1时,△APO为等边三角形,它的面积y=,
∴此时,点(1,)应在y=的一半上方,从而可排除C选项。
故选A。
2、C
【解析】
分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.
详解:∵数据1,2,x,5,6的众数为6,
∴x=6,
把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,
则这组数据的中位数为5;
故选C.
点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.
3、B
【解析】
试题分析:∵2<<3,
∴1<-1<2,
即-1在1到2之间,
故选B.
考点:估算无理数的大小.
4、A
【解析】
(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.
【详解】
证明:(1)如图1,连接OM,OA.
∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.
∵以点A为圆心、OA为半径画弧、交⊙O于点M;
∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;
(1)如图1.
∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.
故两位同学的作法都正确.
故选A.
【点睛】
本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.
5、C
【解析】
根据平方根,数轴,有理数的分类逐一分析即可.
【详解】
①∵,∴是错误的;
②数轴上的点与实数成一一对应关系,故说法正确;
③∵=4,故-2是 的平方根,故说法正确;
④任何实数不是有理数就是无理数,故说法正确;
⑤两个无理数的和还是无理数,如 和 是错误的;
⑥无理数都是无限小数,故说法正确;
故正确的是②③④⑥共4个;
故选C.
【点睛】
本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如 等,也有π这样的数.
6、B
【解析】
先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.
【详解】
在△ABC中,依据勾股定理可知AB==8,
∵两等圆⊙A,⊙B外切,
∴两圆的半径均为4,
∵∠A+∠B=90°,
∴阴影部分的面积==4π.
故选:B.
【点睛】
本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.
7、D
【解析】
【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.
【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,
∴tanα=,
∴AB=,
故选D.
【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.
8、D
【解析】
A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断
B. 同号相乘为正,异号相乘为负,即可判断
C. “购买1张彩票就中奖”是随机事件即可判断
D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断
【详解】
如实数a,b满足a2=b2,则a=±b,A是假命题;
数a,b满足a<0,b<0,则ab>0,B是假命题;
若实“购买1张彩票就中奖”是随机事件,C是假命题;
三角形的三个内角中最多有一个钝角,D是真命题;
故选:D
【点睛】
本题考查了命题与定理,根据实际判断是解题的关键
9、C
【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
详解:对角线互相平分的四边形是平行四边形,A错误;
对角线相等的平行四边形是矩形,B错误;
对角线互相垂直的平行四边形是菱形,C正确;
对角线互相垂直且相等的平行四边形是正方形;
故选:C.
点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
10、A
【解析】
解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cs10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.
11、B
【解析】
由内错角定义选B.
12、D
【解析】
根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:
686000=6.86×105,
故选:D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、。
【解析】
试题分析:如图,连接EG,
∵,∴设,则。
∵点E是边CD的中点,∴。
∵△ADE沿AE折叠后得到△AFE,
∴。
易证△EFG≌△ECG(HL),∴。∴。
∴在Rt△ABG中,由勾股定理得: ,即。
∴。
∴(只取正值)。
∴。
14、x(y+2)(y-2)
【解析】
原式提取x,再利用平方差公式分解即可.
【详解】
原式=x(y2-4)=x(y+2)(y-2),
故答案为x(y+2)(y-2).
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
15、(-1, -6)
【解析】
直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案.
【详解】
∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,
∴A1(-1,-2),
∵将点A1向下平移4个单位,得到点A2,
∴点A2的坐标是:(-1,-6).
故答案为:(-1, -6).
【点睛】
解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
16、
【解析】
先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=
的图象经过一、三象限,k>0,从而可以求出k的取值范围.
【详解】
∵y=(k-1)x的函数值y随x的增大而减小,
∴k-1<0
∴k<1
而y=(k-1)x的图象与反比例函数y=
的图象没有公共点,
∴k>0
综合以上可知:0<k<1.
故答案为0<k<1.
【点睛】
本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键.
17、.
【解析】
根据题意先利用旋转的性质得到∠BOD=120°,则∠AOD=150°,然后根据弧长公式计算即可.
【详解】
解:∵扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,
∴∠BOD=120°,
∴∠AOD=∠AOB+∠BOD=30°+120°=150°,
∴的长=.
故答案为:.
【点睛】
本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.
18、
【解析】
利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可
【详解】
∵圆锥的底面圆的周长是,
∴圆锥的侧面扇形的弧长为 cm,
,
解得:
故答案为.
【点睛】
此题考查弧长的计算,解题关键在于求得圆锥的侧面积
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)①,当m=5时,S取最大值;②满足条件的点F共有四个,坐标分别为,,,,
【解析】
(1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;
(2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
②直接写出满足条件的F点的坐标即可,注意不要漏写.
【详解】
解:(1)将A、C两点坐标代入抛物线,得 ,
解得: ,
∴抛物线的解析式为y=﹣x2+x+8;
(2)①∵OA=8,OC=6,
∴AC= =10,
过点Q作QE⊥BC与E点,则sin∠ACB = = =,
∴ =,
∴QE=(10﹣m),
∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
∴当m=5时,S取最大值;
在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
D的坐标为(3,8),Q(3,4),
当∠FDQ=90°时,F1(,8),
当∠FQD=90°时,则F2(,4),
当∠DFQ=90°时,设F(,n),
则FD2+FQ2=DQ2,
即+(8﹣n)2++(n﹣4)2=16,
解得:n=6± ,
∴F3(,6+),F4(,6﹣),
满足条件的点F共有四个,坐标分别为
F1(,8),F2(,4),F3(,6+),F4(,6﹣).
【点睛】
本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.
20、(1)见解析;(2)B点经过的路径长为π.
【解析】
(1)、连接AH,根据旋转图形的性质得出AB=AE,∠ABH=∠AEH=90°,根据AH为公共边得出Rt△ABH和Rt△AEH全等,从而得出答案;(2)、根据题意得出∠EAB的度数,然后根据弧长的计算公式得出答案.
【详解】
(1)、证明:如图1中,连接AH,
由旋转可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.
(2)、解:由旋转可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,
∴cs∠BAG=,∴∠BAG=30°,∴∠EAB=60° ,∴弧BE的长为=π,
即B点经过的路径长为π.
【点睛】
本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型.明白旋转图形的性质是解决这个问题的关键.
21、(1)k=1、a=2、b=4;(2)s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;(3)Q(﹣,)
【解析】
(1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b
(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,设出P点坐标,可求出N点坐标,即可以用t表示S.
(3)由PB∥CD,可求P点坐标,连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,根据P的坐标,可得∠POA=45°,由OA=OC可得∠CAO=45°则PO⊥AB,根据抛物线的对称性可知R在对称轴上.设Q点坐标,根据△BOR∽△PQS,可求Q点坐标.
【详解】
(1)∵OA=4
∴A(﹣4,0)
∴﹣16+8a=0
∴a=2,
∴y=﹣x2﹣4x,当x=﹣1时,y=﹣1+4=3,
∴B(﹣1,3),
将A(﹣4,0)B(﹣1,3)代入函数解析式,得,
解得,
直线AB的解析式为y=x+4,
∴k=1、a=2、b=4;
(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,如图1,
由(1)知直线AB是y=x+4,抛物线是y=﹣x2﹣4x,
∴当x=t时,yP=﹣t2﹣4t,yN=t+4
PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,
BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,
S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,
化简,得s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;
∴﹣4<t<﹣1
(3)y=﹣x2﹣4x,当x=﹣2时,y=4即D(﹣2,4),当x=0时,y=x+4=4,即C(0,4),
∴CD∥OA
∵B(﹣1,3).
当y=3时,x=﹣3,
∴P(﹣3,3),
连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,如图2,
可证R在DT上
∴PN=ON=3
∴∠PON=∠OPN=45°
∴∠BPR=∠PON=45°,
∵OA=OC,∠AOC=90°
∴∠PBR=∠BAO=45°,
∴PO⊥AC
∵∠BPQ+∠CBO=180,
∴∠BPQ=∠BCO+∠BOC
过点Q作QS⊥PN,垂足是S,
∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,
可求BR=,OR=2,
设Q点的横坐标是m,
当x=m时y=m+4,
∴SQ=m+3,PS=﹣m﹣1
∴,解得m=﹣.
当x=﹣时,y=,
Q(﹣,).
【点睛】
本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.
22、(1)应购进A型台灯75盏,B型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
【解析】
(1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;
(2)根据题意列出方程即可;
(3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.
【详解】
解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
根据题意得,30x+50(100﹣x)=3500,
解得x=75,
所以,100﹣75=25,
答:应购进A型台灯75盏,B型台灯25盏;
(2)设商场销售完这批台灯可获利P元,
则P=(45﹣30)m+(70﹣50)(100﹣m),
=15m+2000﹣20m,
=﹣5m+2000,
即P=﹣5m+2000,
(3)∵B型台灯的进货数量不超过A型台灯数量的4倍,
∴100﹣m≤4m,
∴m≥20,
∵k=﹣5<0,P随m的增大而减小,
∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)
答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
【点睛】
本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用.
23、(1)证明见解析(2) (3)EP+EQ= EC
【解析】
(1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得 AP=CQ;
作 CH⊥PQ 于 H,由题意可求 PQ=2 ,可得 CH=,根据勾股定理可求
AH= ,即可求 AP 的长;
作 CM⊥BQ 于 M,CN⊥EP 于 N,设 BC 交 AE 于 O,由题意可证△CNP≌△ CMQ,可得 CN=CM,QM=PN,即可证 Rt△CEM≌Rt△CEN,EN=EM,∠CEM=
∠CEN=45°,则可求得 EP、EQ、EC 之间的数量关系.
【详解】
解:(1)如图 1 中,∵∠ACB=∠PCQ=90°,
∴∠ACP=∠BCQ 且 AC=BC,CP=CQ
∴△ACP≌△BCQ(SAS)
∴PA=BQ
如图 2 中,作 CH⊥PQ 于 H
∵A、P、Q 共线,PC=2,
∴PQ=2,
∵PC=CQ,CH⊥PQ
∴CH=PH=
在 Rt△ACH 中,AH==
∴PA=AH﹣PH= -
解:结论:EP+EQ= EC
理由:如图 3 中,作 CM⊥BQ 于 M,CN⊥EP 于 N,设 BC 交 AE 于 O.
∵△ACP≌△BCQ,
∴∠CAO=∠OBE,
∵∠AOC=∠BOE,
∴∠OEB=∠ACO=90°,
∵∠M=∠CNE=∠MEN=90°,
∴∠MCN=∠PCQ=90°,
∴∠PCN=∠QCM,
∵PC=CQ,∠CNP=∠M=90°,
∴△CNP≌△CMQ(AAS),
∴CN=CM,QM=PN,
∴CE=CE,
∴Rt△CEM≌Rt△CEN(HL),
∴EN=EM,∠CEM=∠CEN=45°
∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,
∴EP+EQ=EC
【点睛】
本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.
24、(1)∠FHE=60°;(2)篮板顶端 F 到地面的距离是 4.4 米.
【解析】
(1)直接利用锐角三角函数关系得出cs∠FHE=,进而得出答案;
(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
【详解】
(1 )由题意可得:cs∠FHE=,则∠FHE=60°;
(2)延长 FE 交 CB 的延长线于 M,过 A 作 AG⊥FM 于 G,
在 Rt△ABC 中,tan∠ACB=,
∴AB=BC•tan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在 Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=,
∴sin60°==,
∴FG≈2.17(m),
∴FM=FG+GM≈4.4(米),
答:篮板顶端 F 到地面的距离是 4.4 米.
【点睛】
本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.
25、(1)证明见解析;(2)阴影部分的面积为.
【解析】
(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.
【详解】
解:(1)连接OC, ∵OA=OC, ∴∠OAC=∠OCA,
∵AC平分∠BAE, ∴∠OAC=∠CAE,
∴∠OCA=∠CAE, ∴OC∥AE, ∴∠OCD=∠E,
∵AE⊥DE, ∴∠E=90°, ∴∠OCD=90°, ∴OC⊥CD,
∵点C在圆O上,OC为圆O的半径, ∴CD是圆O的切线;
(2)在Rt△AED中, ∵∠D=30°,AE=6, ∴AD=2AE=12,
在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,
∴DB=OB=OC=AD=4,DO=8,
∴CD=
∴S△OCD==8, ∵∠D=30°,∠OCD=90°,
∴∠DOC=60°, ∴S扇形OBC=×π×OC2=,
∵S阴影=S△COD﹣S扇形OBC ∴S阴影=8﹣,
∴阴影部分的面积为8﹣.
26、(1)该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套;(2)A种品牌的教学设备购进数量至多减少1套.
【解析】
(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据花11万元购进两种设备销售后可获得利润12万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据总价=单价×数量结合用于购进这两种教学设备的总资金不超过18万元,即可得出关于m的一元一次不等式,解之取其中最大的整数即可得出结论.
【详解】
解:(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,
根据题意得:
解得:.
答:该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套.
(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,
根据题意得:1.5(20﹣m)+1.2(30+1.5m)≤18,
解得:m≤,
∵m为整数,
∴m≤1.
答:A种品牌的教学设备购进数量至多减少1套.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.
27、(1)48°(1)证明见解析(3)
【解析】
(1)连接CD,根据圆周角定理和垂直的定义可得结论;
(1)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得 ,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;
(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=x,代入面积公式可得结论.
【详解】
(1)连接CD,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴∠ACB+∠BCD=90°,
∵AD⊥CG,
∴∠AFG=∠G+∠BAD=90°,
∵∠BAD=∠BCD,
∴∠ACB=∠G=48°;
(1)∵AB=AE,
∴∠ABE=∠AEB,
∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,
由(1)得:∠G=∠ACB,
∴∠BCG=∠DAC,
∴,
∵AD是⊙O的直径,AD⊥PC,
∴,
∴,
∴∠BAD=1∠DAC,
∵∠COF=1∠DAC,
∴∠BAD=∠COF;
(3)过O作OG⊥AB于G,设CF=x,
∵tan∠CAF== ,
∴AF=1x,
∵OC=OA,由(1)得:∠COF=∠OAG,
∵∠OFC=∠AGO=90°,
∴△COF≌△OAG,
∴OG=CF=x,AG=OF,
设OF=a,则OA=OC=1x﹣a,
Rt△COF中,CO1=CF1+OF1,
∴(1x﹣a)1=x1+a1,
a=x,
∴OF=AG=x,
∵OA=OB,OG⊥AB,
∴AB=1AG=x,
∴.
【点睛】
圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(1)根据外角的性质和圆的性质得:;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.
类型
价格
进价(元/盏)
售价(元/盏)
A型
30
45
B型
50
70
A
B
进价(万元/套)
1.5
1.2
售价(万元/套)
1.8
1.4
北京市北京昌平临川育人校2021-2022学年中考数学适应性模拟试题含解析: 这是一份北京市北京昌平临川育人校2021-2022学年中考数学适应性模拟试题含解析,共24页。试卷主要包含了下列各式中,互为相反数的是等内容,欢迎下载使用。
北京三十一中2021-2022学年中考数学四模试卷含解析: 这是一份北京三十一中2021-2022学年中考数学四模试卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,下列各运算中,计算正确的是,下列计算正确的是等内容,欢迎下载使用。
2022年天津二十一中学中考数学适应性模拟试题含解析: 这是一份2022年天津二十一中学中考数学适应性模拟试题含解析,共21页。试卷主要包含了不等式组的解集是,下列计算正确的是等内容,欢迎下载使用。