北京市八十中学2022年中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.等腰三角形的一个外角是100°,则它的顶角的度数为( )
A.80° B.80°或50° C.20° D.80°或20°
2.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是( )
A.①④⑤ B.①②④ C.①③④ D.①③⑤
3.中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是( )
A. B. C. D.
4.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为( )
A. B. C. D.
5.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=( )
A.15 B.13 C.12 D.5
6.下列关于事件发生可能性的表述,正确的是( )
A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件
B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖
C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品
D.掷两枚硬币,朝上的一面是一正面一反面的概率为
7.下列各式正确的是( )
A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣2018
8.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是( )
A.60° B.45° C.15° D.90°
9.函数的图像位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.一元二次方程x2﹣3x+1=0的根的情况( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.以上答案都不对
二、填空题(本大题共6个小题,每小题3分,共18分)
11.化简:______.
12.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.
13.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.
14.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.
15.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)
16.分解因式:a3-a=
三、解答题(共8题,共72分)
17.(8分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
18.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:
(1)请用t分别表示A、B的路程sA、sB;
(2)在A出发后几小时,两人相距15km?
19.(8分)如图,在△ABC中,∠ABC=90°.
(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)
(2)判断(1)中AC与⊙O的位置关系,直接写出结果.
20.(8分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?
21.(8分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
22.(10分)先化简,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.
23.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.
(1)求k,a,b的值;
(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.
24.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.
【详解】
∵等腰三角形的一个外角是100°,
∴与这个外角相邻的内角为180°−100°=80°,
当80°为底角时,顶角为180°-160°=20°,
∴该等腰三角形的顶角是80°或20°.
故答案选:D.
【点睛】
本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.
2、D
【解析】
根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.
【详解】
解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4
故①正确
则AE=10﹣4=6
t=10时,△BPQ的面积等于
∴AB=DC=8
故
故②错误
当14<t<22时,
故③正确;
分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形
此时,满足条件的点有4个,故④错误.
∵△BEA为直角三角形
∴只有点P在DC边上时,有△BPQ与△BEA相似
由已知,PQ=22﹣t
∴当或时,△BPQ与△BEA相似
分别将数值代入
或,
解得t=(舍去)或t=14.1
故⑤正确
故选:D.
【点睛】
本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
形判定,应用了分类讨论和数形结合的数学思想.
3、B
【解析】
分析:由平行得出相似,由相似得出比例,即可作出判断.
详解: ∵EF∥AB, ∴△CEF∽△CAB, ∴,故选B.
点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.
4、C
【解析】
试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.
故选C
5、A
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.
【详解】
过点A作AM⊥x轴于点M,如图所示.
设OA=a=OB,则,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM=a,
∴点A的坐标为(a,a).
∵四边形OACB是菱形,S△AOF=,
∴OB×AM=,
即×a×a=39,
解得a=±,而a>0,
∴a=,即A(,6),
∵点A在反比例函数y=的图象上,
∴k=×6=1.
故选A.
【解答】
解:
【点评】
本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=S菱形OBCA.
6、C
【解析】
根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.
【详解】
解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.
B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.
C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.
D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.
故选:C.
【点睛】
考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.
7、A
【解析】
根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.
【详解】
选项A,﹣(﹣2018)=2018,故选项A正确;
选项B,|﹣2018|=2018,故选项B错误;
选项C,20180=1,故选项C错误;
选项D,2018﹣1= ,故选项D错误.
故选A.
【点睛】
本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.
8、C
【解析】
试题解析:∵sin∠CAB=
∴∠CAB=45°.
∵,
∴∠C′AB′=60°.
∴∠CAC′=60°-45°=15°,
鱼竿转过的角度是15°.
故选C.
考点:解直角三角形的应用.
9、D
【解析】
根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.
【详解】
解:函数的图象位于第四象限.
故选:D.
【点睛】
此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.
10、B
【解析】
首先确定a=1,b=-3,c=1,然后求出△=b2-4ac的值,进而作出判断.
【详解】
∵a=1,b=-3,c=1,
∴△=(-3)2-4×1×1=5>0,
∴一元二次方程x2-3x+1=0两个不相等的实数根;
故选B.
【点睛】
此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3
【解析】
分析:根据算术平方根的概念求解即可.
详解:因为32=9
所以=3.
故答案为3.
点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.
12、-1
【解析】
试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.
考点:反比例外函数k的几何意义.
13、
【解析】
试题解析:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,
∴P(飞镖落在白色区域)=.
14、(7+6)
【解析】
过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.
【详解】
解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,
∵坝顶部宽为2m,坝高为6m,
∴DC=EF=2m,EC=DF=6m,
∵α=30°,
∴BE= (m),
∵背水坡的坡比为1.2:1,
∴,
解得:AF=5(m),
则AB=AF+EF+BE=5+2+6=(7+6)m,
故答案为(7+6)m.
【点睛】
本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.
15、5
【解析】
如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.
【详解】
如图,作BH⊥AC于H.
在Rt△ABH中,∵AB=10海里,∠BAH=30°,
∴∠ABH=60°,BH=AB=5(海里),
在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
∴BH=CH=5海里,
∴CB=5(海里).
故答案为:5.
【点睛】
本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.
16、
【解析】
a3-a=a(a2-1)=
三、解答题(共8题,共72分)
17、(1)详见解析;(2)tan∠ADP=.
【解析】
(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;
(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.
【详解】
(1)证明:∵AE垂直平分BF,
∴AB=AF,
∴∠BAE=∠FAE,
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠FAE=∠AEB,
∴∠AEB=∠BAE,
∴AB=BE,
∴AF=BE.
∵AF∥BC,
∴四边形ABEF是平行四边形.
∵AB=BE,
∴四边形ABEF是菱形;
(2)解:作PH⊥AD于H,
∵四边形ABEF是菱形,∠ABC=60°,AB=4,
∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
∴AP=AB=2,
∴PH=,DH=5,
∴tan∠ADP==.
【点睛】
本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.
18、(1)sA=45t﹣45,sB=20t;(2)在A出发后小时或小时,两人相距15km.
【解析】
(1)根据函数图象中的数据可以分别求得s与t的函数关系式;
(2)根据(1)中的函数解析式可以解答本题.
【详解】
解:(1)设sA与t的函数关系式为sA=kt+b,
,得,
即sA与t的函数关系式为sA=45t﹣45,
设sB与t的函数关系式为sB=at,
60=3a,得a=20,
即sB与t的函数关系式为sB=20t;
(2)|45t﹣45﹣20t|=15,
解得,t1=,t2=,
,,
即在A出发后小时或小时,两人相距15km.
【点睛】
本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.
19、(1)见解析(2)相切
【解析】
(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即
可;
(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.
【详解】
(1)如图所示:
;
(2)相切;过O点作OD⊥AC于D点,
∵CO平分∠ACB,
∴OB=OD,即d=r,
∴⊙O与直线AC相切,
【点睛】
此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,
正确利用角平分线的性质求出d=r是解题关键.
20、1平方米
【解析】
设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.
【详解】
解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,
根据题意得:﹣=11,
解得:x=500,
经检验,x=500是原方程的解,
∴1.2x=1.
答:实际平均每天施工1平方米.
【点睛】
考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.
21、1
【解析】
先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.
【详解】
解:a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2,
将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.
故代数式a3b+2a2b2+ab3的值是1.
22、
【解析】
对待求式的分子、分母进行因式分解,并将除法化为乘法可得×-1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a的值,再将a、b的值代入化简结果中计算即可解答本题.
【详解】
原式=×-1
=-1
=
=,
当a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1时,
原式=.
【点睛】
本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.
23、(1)k=1、a=2、b=4;(2)s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;(3)Q(﹣,)
【解析】
(1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b
(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,设出P点坐标,可求出N点坐标,即可以用t表示S.
(3)由PB∥CD,可求P点坐标,连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,根据P的坐标,可得∠POA=45°,由OA=OC可得∠CAO=45°则PO⊥AB,根据抛物线的对称性可知R在对称轴上.设Q点坐标,根据△BOR∽△PQS,可求Q点坐标.
【详解】
(1)∵OA=4
∴A(﹣4,0)
∴﹣16+8a=0
∴a=2,
∴y=﹣x2﹣4x,当x=﹣1时,y=﹣1+4=3,
∴B(﹣1,3),
将A(﹣4,0)B(﹣1,3)代入函数解析式,得,
解得,
直线AB的解析式为y=x+4,
∴k=1、a=2、b=4;
(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,如图1,
由(1)知直线AB是y=x+4,抛物线是y=﹣x2﹣4x,
∴当x=t时,yP=﹣t2﹣4t,yN=t+4
PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,
BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,
S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,
化简,得s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;
∴﹣4<t<﹣1
(3)y=﹣x2﹣4x,当x=﹣2时,y=4即D(﹣2,4),当x=0时,y=x+4=4,即C(0,4),
∴CD∥OA
∵B(﹣1,3).
当y=3时,x=﹣3,
∴P(﹣3,3),
连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,如图2,
可证R在DT上
∴PN=ON=3
∴∠PON=∠OPN=45°
∴∠BPR=∠PON=45°,
∵OA=OC,∠AOC=90°
∴∠PBR=∠BAO=45°,
∴PO⊥AC
∵∠BPQ+∠CBO=180,
∴∠BPQ=∠BCO+∠BOC
过点Q作QS⊥PN,垂足是S,
∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,
可求BR=,OR=2,
设Q点的横坐标是m,
当x=m时y=m+4,
∴SQ=m+3,PS=﹣m﹣1
∴,解得m=﹣.
当x=﹣时,y=,
Q(﹣,).
【点睛】
本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.
24、.
【解析】
试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.
试题解析:解:画树状图如答图:
∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,
∴P(A,C两个区域所涂颜色不相同)=.
考点:1.画树状图或列表法;2.概率.
北京市第十四中学2022年中考数学仿真试卷含解析: 这是一份北京市第十四中学2022年中考数学仿真试卷含解析,共17页。试卷主要包含了的相反数是,下列各式正确的是等内容,欢迎下载使用。
2022年天津市南开中学中考数学仿真试卷含解析: 这是一份2022年天津市南开中学中考数学仿真试卷含解析,共19页。
2022年秦皇岛市重点中学中考数学仿真试卷含解析: 这是一份2022年秦皇岛市重点中学中考数学仿真试卷含解析,共23页。