2022中雅九年级入学考试数学试卷及参考答案
展开2022年九年级上学期暑假数学作业练习
命题人:蒋俊艳 审题人:初三数学组
学生注意:本作业共3道大题,23道小题,满分100分,时量90分钟
一、选择题(每题3分,共30分)
1.若式子在实数范围内有意义,则x的取值范围是( )
A. B. C. D.
2.二次函数y=﹣(x﹣1)2 +2的最大值是( )
A.﹣2 B.2 C.﹣1 D.1
3.直角三角形两直角边长为6和8,则此三角形斜边上的中线的长是( )
A.10 B.5 C.4 D.3
4.下列判断正确的是( )
A.对角线互相垂直的平行四边形是菱形 B.两组邻边相等的四边形是平行四边形
C.对角线相等的四边形是矩形 D.有一个角是直角的平行四边形是正方形
5.用配方法解方程x2﹣2x﹣5=0时,原方程变形正确的是( )
A.(x﹣1)2=6 B.(x﹣2)2=9 C.(x+1)2=6 D.(x+2)2=9
6.下列关于一次函数y=2x+3的说法中,正确的是( )
A.图象经过第一、二、四象限 B.y随x的增大而减小
C.当x>﹣1.5时,y<0 D.图象与y轴交于点(0,3)
7.某小组6名同学积极参加班级组织的为灾区捐款活动,他们捐款的数额分别是(单位:元):50,30,50,50,40,70.这组数据的中位数和众数分别是( )
A.40,50 B.45,50 C.50,50 D.50,70
8.正方形的一条对角线长为6,则正方形的面积是( )
A.9 B.36 C.18 D.3
9.新型冠状病毒肺炎具有人传人性,调查发现1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,则x为( )
A.14 B.15 C.16 D.17
10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,
有下列5个结论:①abc<0:②b<a+c;③4a+2b+c>0;
④2c﹣3b<0;⑤a+b>an2+bn(n≠1).其中正确的个数有( )
A.2个 B.3个 C.4个 D.5个
二、填空题(每小题3分,共18分)
11.因式分解:2x2﹣8= .
12.已知菱形两条对角线长分别为10cm、24cm,则该菱形的边长等于 cm.
13.设x1,x2是关于x的方程x2﹣3x+k=0的两个根,且x1=2x2,则k= .
14.如图,直线l1:y=2x与直线l2:y=kx+4交于点P,则不等式2x>kx+4的解集为 .
15.把二次函数y=x2的图象先向左平移3个单位,向下平移5个单位后图象对应的二次函数解析式为 .
16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为 .
第14题 第16题
三、解答题(共52分)
17.(6分)计算:.
18.(6分)先化简,再求值:,其中x=.
19.(6分)如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).
(1)求m的值;
(2)求一次函数图象l2相应的函数表达式.
20.(8分)某校积极落实“双减”政策,将要开设拓展课程.为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A(综合模型)、B(摄影艺术)、C(音乐鉴赏)、D(劳动实践),随机抽取了部分学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.
根据以上信息,解答下列问题:
(1)此次被调查的学生人数为 名;
(2)直接在答题卡中补全条形统计图;
(3)求拓展课程C(音乐鉴赏)所对应的扇形的∠1的度数;
(4)根据抽样调查结果,请你估计该校800名学生中,有多少名学生最喜欢D(劳动实践)拓展课程.
21.(8分)已知关于x的方程
(1)若方程有两个实数根,求m的取值范围;
(2)是否存在m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.
22.(8分)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.
(1)求证:△ABE≌△ADF;
(2)若AE=4,CF=2,求菱形的面积.
23.(10分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,OA=3,OC=4,抛物线y=ax2+bx+4经过点B,且与x轴交于点D(﹣1,0)和点E.
(1)求抛物线的表达式;
(2)若P是第一象限抛物线上的一个动点,连接CP,PE,当四边形OCPE的面积最大时,求点P的坐标,此时四边形OCPE的最大面积是多少;
(3)若N是抛物线对称轴上一点,在平面内是否存在一点M,使以点C,D,M,N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由.
2024西雅九年级下入学考试数学试卷: 这是一份2024西雅九年级下入学考试数学试卷,共4页。
2023-2024中雅九上入学考试数学试卷: 这是一份2023-2024中雅九上入学考试数学试卷,共7页。
2023-2024北雅九上入学考试数学试卷: 这是一份2023-2024北雅九上入学考试数学试卷,共6页。