|试卷下载
搜索
    上传资料 赚现金
    2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析01
    2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析02
    2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析

    展开
    这是一份2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列判断错误的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为(  )

    A.(,2) B.(4,1) C.(4,) D.(4,)
    2. “车辆随机到达一个路口,遇到红灯”这个事件是( )
    A.不可能事件 B.不确定事件 C.确定事件 D.必然事件
    3.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( )

    A.4,30° B.2,60° C.1,30° D.3,60°
    4.对于任意实数k,关于x的方程的根的情况为
    A.有两个相等的实数根 B.没有实数根
    C.有两个不相等的实数根 D.无法确定
    5.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是(  )cm.

    A.7 B.11 C.13 D.16
    6.用配方法解方程x2﹣4x+1=0,配方后所得的方程是( )
    A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣3
    7.已知二次函数 图象上部分点的坐标对应值列表如下:
    x


    -3
    -2
    -1
    0
    1
    2

    y


    2
    -1
    -2
    -1
    2
    7

    则该函数图象的对称轴是( )
    A.x=-3 B.x=-2 C.x=-1 D.x=0
    8.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )
    A.q<16 B.q>16
    C.q≤4 D.q≥4
    9.下列判断错误的是( )
    A.对角线相等的四边形是矩形
    B.对角线相互垂直平分的四边形是菱形
    C.对角线相互垂直且相等的平行四边形是正方形
    D.对角线相互平分的四边形是平行四边形
    10.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为() 

    A.30 B.27 C.14 D.32
    二、填空题(共7小题,每小题3分,满分21分)
    11.计算的结果等于_____________.
    12.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.

    13.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º.则图中阴影部分的面积是____________.

    14.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
    ①四边形ACBE是菱形;
    ②∠ACD=∠BAE;
    ③AF:BE=2:1;
    ④S四边形AFOE:S△COD=2:1.
    其中正确的结论有_____.(填写所有正确结论的序号)

    15.如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若∠A=60°,AB=4,则四边形BCNM的面积为_____.

    16.如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于__________.
    17.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.
    求证:BF=AG.

    19.(5分)如图,在平行四边形中,的平分线与边相交于点.
    (1)求证;
    (2)若点与点重合,请直接写出四边形是哪种特殊的平行四边形.

    20.(8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:

    根据统计图所提供的倍息,解答下列问题:
    (1)本次抽样调查中的学生人数是多少人;
    (2 )补全条形统计图;
    (3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;
    (4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.
    21.(10分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.



    价格(万元/台)
    7
    5
    每台日产量(个)
    100
    60
    (1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?
    22.(10分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.

    (1)求这条抛物线的表达式和顶点P的坐标;
    (2)点E在抛物线的对称轴上,且,求点E的坐标;
    (3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,,求点Q的坐标.
    23.(12分)(1)计算:(﹣2)﹣2+cos60°﹣(﹣2)0;
    (2)化简:(a﹣)÷ .
    24.(14分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上

    请根据阅读材料,解决下列问题:
    如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.
    (I)旋转中心是点 ,旋转了 (度);
    (II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′= =2,于是得到结论.
    【详解】
    解:∵AD′=AD=4,
    AO=AB=1,
    ∴OD′==2,
    ∵C′D′=4,C′D′∥AB,
    ∴C′(4,2),
    故选:D.
    【点睛】
    本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.
    2、B
    【解析】
    根据事件发生的可能性大小判断相应事件的类型即可.
    【详解】
    “车辆随机到达一个路口,遇到红灯”是随机事件.
    故选:.
    【点睛】
    本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    3、B
    【解析】
    试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,
    ∴∠A′B′C=60°,AB=A′B′=A′C=4,
    ∴△A′B′C是等边三角形,
    ∴B′C=4,∠B′A′C=60°,
    ∴BB′=6﹣4=2,
    ∴平移的距离和旋转角的度数分别为:2,60°
    故选B.
    考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定
    4、C
    【解析】
    判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:
    ∵a=1,b=,c=,
    ∴.
    ∴此方程有两个不相等的实数根.故选C.
    5、C
    【解析】
    直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.
    【详解】
    ∵将线段DC沿着CB的方向平移7cm得到线段EF,
    ∴EF=DC=4cm,FC=7cm,
    ∵AB=AC,BC=12cm,
    ∴∠B=∠C,BF=5cm,
    ∴∠B=∠BFE,
    ∴BE=EF=4cm,
    ∴△EBF的周长为:4+4+5=13(cm).
    故选C.
    【点睛】
    此题主要考查了平移的性质,根据题意得出BE的长是解题关键.
    6、A
    【解析】
    方程变形后,配方得到结果,即可做出判断.
    【详解】
    方程,
    变形得:,
    配方得:,即
    故选A.
    【点睛】
    本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.
    7、C
    【解析】
    由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.
    【详解】
    解:∵x=-2和x=0时,y的值相等,
    ∴二次函数的对称轴为,
    故答案为:C.
    【点睛】
    本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.
    8、A
    【解析】
    ∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,
    ∴△>0,即82-4q>0,
    ∴q<16,
    故选 A.
    9、A
    【解析】
    利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项.
    【详解】
    解:、对角线相等的四边形是矩形,错误;
    、对角线相互垂直平分的四边形是菱形,正确;
    、对角线相互垂直且相等的平行四边形是正方形,正确;
    、对角线相互平分的四边形是平行四边形,正确;
    故选:.
    【点睛】
    本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大.
    10、A
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AB//CD,AB=CD,AD//BC,
    ∴△BEF∽△CDF,△BEF∽△AED,
    ∴ ,
    ∵BE:AB=2:3,AE=AB+BE,
    ∴BE:CD=2:3,BE:AE=2:5,
    ∴ ,
    ∵S△BEF=4,
    ∴S△CDF=9,S△AED=25,
    ∴S四边形ABFD=S△AED-S△BEF=25-4=21,
    ∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,
    故选A.
    【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、a3
    【解析】
    试题解析:x5÷x2=x3.
    考点:同底数幂的除法.
    12、
    【解析】
    由题中所给条件证明△ADF△ACG,可求出的值.
    【详解】
    解:在△ADF和△ACG中,
    AB=6,AC=5,D是边AB的中点
    AG是∠BAC的平分线,
    ∴∠DAF=∠CAG
    ∠ADE=∠C
    ∴△ADF△ACG
    ∴.
    故答案为.
    【点睛】
    本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.
    13、(-)cm2
    【解析】
    S阴影=S扇形-S△OBD= 52-×5×5=.
    故答案是: .
    14、①②④.
    【解析】
    根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∵EC垂直平分AB,
    ∴OA=OB=AB=DC,CD⊥CE,
    ∵OA∥DC,
    ∴=,
    ∴AE=AD,OE=OC,
    ∵OA=OB,OE=OC,
    ∴四边形ACBE是平行四边形,
    ∵AB⊥EC,
    ∴四边形ACBE是菱形,故①正确,
    ∵∠DCE=90°,DA=AE,
    ∴AC=AD=AE,
    ∴∠ACD=∠ADC=∠BAE,故②正确,
    ∵OA∥CD,
    ∴,
    ∴,故③错误,
    设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=1a,
    ∴四边形AFOE的面积为4a,△ODC的面积为6a
    ∴S四边形AFOE:S△COD=2:1.故④正确.

    故答案是:①②④.
    【点睛】
    此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.
    15、3
    【解析】
    如图,连接BD.首先证明△BCD是等边三角形,推出S△EBC=S△DBC=×42=4,再证明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解决问题.
    【详解】
    解:如图,连接BD.

    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,
    ∴△BCD是等边三角形,
    ∴S△EBC=S△DBC=×42=4,
    ∵EM=MB,EN=NC,
    ∴MN∥BC,MN=BC,
    ∴△EMN∽△EBC,
    ∴=()2=,
    ∴S△EMN=,
    ∴S阴=4-=3,
    故答案为3.
    【点睛】
    本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    16、4.
    【解析】
    只需根据梯形的中位线定理“梯形的中位线等于两底和的一半”,进行计算.
    【详解】
    解:根据梯形的中位线定理“梯形的中位线等于两底和的一半”,则另一条底边长.
    故答案为:4
    【点睛】
    本题考查梯形中位线,用到的知识点为:梯形的中位线=(上底+下底)
    17、1.
    【解析】
    试题解析:连接OE,如下图所示,

    则:OE=OA=R,
    ∵AB是⊙O的直径,弦EF⊥AB,
    ∴ED=DF=4,
    ∵OD=OA-AD,
    ∴OD=R-2,
    在Rt△ODE中,由勾股定理可得:
    OE2=OD2+ED2,
    ∴R2=(R-2)2+42,
    ∴R=1.
    考点:1.垂径定理;2.解直角三角形.

    三、解答题(共7小题,满分69分)
    18、见解析
    【解析】
    根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.
    【详解】
    证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,
    又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,
    又∵∠BAC=90°,AE⊥CD,
    ∴∠BAF+∠ADE=90°,∠ACG +∠ADE=90°,
    ∴∠BAF=∠ACG. 又∵AB=CA,

    ∴△ABF≌△CAG(ASA),
    ∴BF=AG
    【点睛】
    此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.
    19、(1)见解析;(2)菱形.
    【解析】
    (1)根据角平分线的性质可得∠ADE=∠CDE,再由平行线的性质可得AB∥CD,易得AD=AE,从而可证得结论;
    (2)若点与点重合,可证得AD=AB,根据邻边相等的平行四边形是菱形即可作出判断.
    【详解】
    (1)∵DE平分∠ADC,
    ∴∠ADE=∠CDE.
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,AD=BC,AB=CD.
    ∵∠AED=∠CDE.
    ∴∠ADE=∠AED.
    ∴AD=AE.
    ∴BC=AE.
    ∵AB=AE+EB.
    ∴BE+BC=CD.
    (2)菱形,理由如下:
    由(1)可知,AD=AE,
    ∵点E与B重合,
    ∴AD=AB.
    ∵四边形ABCD是平行四边形
    ∴平行四边形ABCD为菱形.
    【点睛】
    本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质,菱形的性质,熟练掌握各知识是解题的关键.
    20、(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4).
    【解析】
    (1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;
    (2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;
    (3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;
    (4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.
    【详解】
    (1)30÷30%=100,
    所以本次抽样调查中的学生人数为100人;
    (2)选”舞蹈”的人数为100×10%=10(人),
    选“打球”的人数为100﹣30﹣10﹣20=40(人),
    补全条形统计图为:

    (3)2000×=800,
    所以估计该校课余兴趣爱好为“打球”的学生人数为800人;
    (4)画树状图为:

    共有12种等可能的结果数,其中选到一男一女的结果数为8,
    所以选到一男一女的概率=.
    【点睛】
    本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.
    21、(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,
    【解析】
    (1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.
    (2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.
    【详解】
    解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台
    依题意,得7x+5(6-x)≤34
    解这个不等式,得x≤2,即x可取0,1,2三个值.
    ∴该公司按要求可以有以下三种购买方案:
    方案一:不购买甲种机器,购买乙种机器6台.
    方案二:购买甲种机器l1台,购买乙种机器5台.
    方案三:购买甲种机器2台,购买乙种机器4台
    (2)根据题意,100x+60(6-x)≥380
    解之得x>
    由(1)得x≤2,即≤x≤2.
    ∴x可取1,2俩值.
    即有以下两种购买方案:
    购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;
    购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.
    ∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.
    【点睛】
    解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案.
    22、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.
    【解析】
    (1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;
    (2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;
    (3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.
    【详解】
    解:(1)抛物线解析式为,
    即,

    顶点P的坐标为;
    (2)抛物线的对称轴为直线,
    设,

    ,解得,
    E点坐标为;
    (3)直线交x轴于F,作MN⊥直线x=2于H,如图,

    而,

    设,则,
    在中,,

    整理得,解得(舍去),,
    Q点的坐标为.

    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.
    23、(1);(2);
    【解析】
    (1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;
    (2)根据分式的减法和除法可以解答本题.
    【详解】
    解:(1)原式


    (2)原式


    【点睛】
    本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.
    24、B 60
    【解析】
    分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF,则点F在线段BC的垂直平分线上,又由AC=AB,可得点A在线段BC的垂直平分线上,由AF垂直平分BC,即∠CQP=90,进而得出∠APC的度数.
    详解:(1)B,60;
    (2)补全图形如图所示;

    的大小保持不变,
    理由如下:设与交于点
    ∵直线是等边的对称轴
    ∴,
    ∵经顺时针旋转后与重合
    ∴ ,

    ∴点在线段的垂直平分线上

    ∴点在线段的垂直平分线上
    ∴垂直平分,即

    点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.

    相关试卷

    2022年浙江省杭州市文澜中学中考考前最后一卷数学试卷含解析: 这是一份2022年浙江省杭州市文澜中学中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,化简,下面说法正确的个数有等内容,欢迎下载使用。

    2022年浙江省宁波市江东区中考考前最后一卷数学试卷含解析: 这是一份2022年浙江省宁波市江东区中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,化简的结果为等内容,欢迎下载使用。

    2022年林芝中考考前最后一卷数学试卷含解析: 这是一份2022年林芝中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,点A等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map