|试卷下载
搜索
    上传资料 赚现金
    2022届浙江省逍林初中中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    2022届浙江省逍林初中中考考前最后一卷数学试卷含解析01
    2022届浙江省逍林初中中考考前最后一卷数学试卷含解析02
    2022届浙江省逍林初中中考考前最后一卷数学试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省逍林初中中考考前最后一卷数学试卷含解析

    展开
    这是一份2022届浙江省逍林初中中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列计算,结果等于a4的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足(  )

    A.a= B.a=2b C.a=b D.a=3b
    2.已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),则m的值为(  )
    A.﹣2 B.﹣1 C.1 D.2
    3.下列图标中,既是轴对称图形,又是中心对称图形的是(   )
    A. B. C. D.
    4.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是(  )

    A. B. C. D.
    5.如图,已知⊙O的半径为5,AB是⊙O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为(  )

    A.1 B.2 C.3 D.8
    6.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )

    A.①②③ B.①②④ C.①③④ D.②③④
    7.下列计算,结果等于a4的是(  )
    A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2
    8.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )
    A. B. C. D.
    9.已知反比例函数,下列结论不正确的是(  )
    A.图象必经过点(﹣1,2) B.y随x的增大而增大
    C.图象在第二、四象限内 D.若,则
    10.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是 30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为_____.

    12.比较大小:_____1.
    13.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.

    14.如图,边长为6的菱形ABCD中,AC是其对角线,∠B=60°,点P在CD上,CP=2,点M在AD上,点N在AC上,则△PMN的周长的最小值为_____________ .

    15.化简;÷(﹣1)=______.
    16.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.
    17.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.
    三、解答题(共7小题,满分69分)
    18.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.

    队别
    平均分
    中位数
    方差
    合格率
    优秀率
    七年级
    6.7
    m
    3.41
    90%
    n
    八年级
    7.1
    7.5
    1.69
    80%
    10%
    (1)请依据图表中的数据,求a、b的值;
    (2)直接写出表中的m、n的值;
    (3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.
    19.(5分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
    求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
    20.(8分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
    (1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
    (2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
    21.(10分)某经销商从市场得知如下信息:

    A品牌手表
    B品牌手表
    进价(元/块)
    700
    100
    售价(元/块)
    900
    160
    他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
    22.(10分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地   千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.

    23.(12分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).


    根据以上信息回答下列问题:训练后学生成绩统计表中,并补充完成下表:
    若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.
    24.(14分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.
    【详解】
    由图形可知,
    S2=(a-b)2+b(a+b)+ab=a2+2b2,
    S1=(a+b)2-S2=2ab-b2,
    ∵S2=2S1,
    ∴a2+2b2=2(2ab﹣b2),
    ∴a2﹣4ab+4b2=0,
    即(a﹣2b)2=0,
    ∴a=2b,
    故选B.
    【点睛】
    本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.
    2、C
    【解析】
    根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.
    【详解】
    ∵一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),
    ∴设旋转后的函数解析式为y=﹣x﹣1,
    在一次函数y=﹣x+2中,令y=1,则有﹣x+2=1,解得:x=4,
    即一次函数y=﹣x+2与x轴交点为(4,1).
    一次函数y=﹣x﹣1中,令y=1,则有﹣x﹣1=1,解得:x=﹣2,
    即一次函数y=﹣x﹣1与x轴交点为(﹣2,1).
    ∴m==1,
    故选:C.
    【点睛】
    本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.
    3、D
    【解析】
    试题分析:根据轴对称图形和中心对称图形的概念,可知:
    A既不是轴对称图形,也不是中心对称图形,故不正确;
    B不是轴对称图形,但是中心对称图形,故不正确;
    C是轴对称图形,但不是中心对称图形,故不正确;
    D即是轴对称图形,也是中心对称图形,故正确.
    故选D.
    考点:轴对称图形和中心对称图形识别
    4、C
    【解析】
    根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.
    【详解】
    由题意可得:PB=3﹣t,BQ=2t,
    则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,
    故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.
    故选C.
    【点睛】
    此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.
    5、B
    【解析】
    连接OP、OA,根据垂径定理求出AQ,根据勾股定理求出OQ,计算即可.
    【详解】
    解:
    由题意得,当点P为劣弧AB的中点时,PQ最小,
    连接OP、OA,
    由垂径定理得,点Q在OP上,AQ=AB=4,
    在Rt△AOB中,OQ==3,
    ∴PQ=OP-OQ=2,
    故选:B.
    【点睛】
    本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.
    6、B
    【解析】
    解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
    根据作图过程可知:PB=CP,
    ∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
    ∵∠ABC=90°,∴PD∥AB.
    ∴E为AC的中点,∴EC=EA,∵EB=EC.
    ∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
    ∴正确的有①②④.
    故选B.
    考点:线段垂直平分线的性质.
    7、C
    【解析】
    根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.
    【详解】
    A.a+3a=4a,错误;
    B.a5和a不是同类项,不能合并,故此选项错误;
    C.(a2)2=a4,正确;
    D.a8÷a2=a6,错误.
    故选C.
    【点睛】
    本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.
    8、B
    【解析】
    袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.
    9、B
    【解析】
    试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.
    试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);
    B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;
    C、命题正确;
    D、命题正确.
    故选B.
    考点:反比例函数的性质
    10、A
    【解析】
    根据题意找到等量关系:①矩形面积+三角形面积﹣阴影面积=30;②(矩形面积﹣阴影面积)﹣(三角形面积﹣阴影面积)=4,据此列出方程组.
    【详解】
    依题意得:

    故选A.
    【点睛】
    考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    根据题意得出△AOD∽△OCE,进而得出,即可得出k=EC×EO=1.
    【详解】
    解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,
    ∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,
    ∴CO⊥AB,∠CAB=10°,
    则∠AOD+∠COE=90°,
    ∵∠DAO+∠AOD=90°,
    ∴∠DAO=∠COE,
    又∵∠ADO=∠CEO=90°,
    ∴△AOD∽△OCE,
    ∴ =tan60°= ,
    ∴= =1,
    ∵点A是双曲线y=- 在第二象限分支上的一个动点,
    ∴S△AOD=×|xy|= ,
    ∴S△EOC= ,即×OE×CE=,
    ∴k=OE×CE=1,
    故答案为1.

    【点睛】
    本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.
    12、
    【解析】
    先将1化为根号的形式,根据被开方数越大值越大即可求解.
    【详解】
    解: , ,

    故答案为>.
    【点睛】
    本题考查实数大小的比较,比较大小时,常用的方法有:作差法,作商法,如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较.
    13、1
    【解析】
    由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=1,继而可得结论.
    【详解】
    ∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC.
    ∵AB=4,BC=6,∴AD+CD=1.
    ∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.
    故答案为1.
    【点睛】
    本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
    14、2
    【解析】
    过P作关于AC和AD的对称点,连接和,过P作, 和,M,N共线时最短,根据对称性得知△PMN的周长的最小值为.因为四边形ABCD是菱形,AD是对角线,可以求得,根据特殊三角形函数值求得,,再根据线段相加勾股定理即可求解.
    【详解】
    过P作关于AC和AD的对称点,连接和,过P作,

    四边形ABCD是菱形,AD是对角线,





    ,

    又由题意得



    【点睛】
    本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.
    15、-
    【解析】
    直接利用分式的混合运算法则即可得出.
    【详解】
    原式,


    .
    故答案为.
    【点睛】
    此题主要考查了分式的化简,正确掌握运算法则是解题关键.
    16、m≥且m≠1.
    【解析】
    根据一元二次方程的定义和判别式的意义得到m﹣1≠0且 然后求出两个不等式的公共部分即可.
    【详解】
    解:根据题意得m﹣1≠0且
    解得且m≠1.
    故答案为: 且m≠1.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
    17、15p
    【解析】
    试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=•2π•3•5=15π.
    故答案为15π.
    考点:圆锥的计算.

    三、解答题(共7小题,满分69分)
    18、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.
    【解析】
    试题分析:(1)根据题中数据求出a与b的值即可;
    (2)根据(1)a与b的值,确定出m与n的值即可;
    (3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.
    试题解析:(1)根据题意得:
    解得a=5,b=1;
    (2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;
    优秀率为=20%,即n=20%;
    (3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,
    故八年级队比七年级队成绩好.
    考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.
    19、解:(1)该校班级个数为4÷20%=20(个),
    只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),
    该校平均每班留守儿童的人数为:
    =4(名),
    补图如下:

    (2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,

    有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,
    则所选两名留守儿童来自同一个班级的概率为:=.
    【解析】
    (1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;
    (2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.
    20、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
    【解析】
    (1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;
    (2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润.
    【详解】
    (1)设购进甲种商品x件,购进乙商品y件,
    根据题意得:

    解得:,
    答:商店购进甲种商品40件,购进乙种商品60件;
    (2)设商店购进甲种商品a件,则购进乙种商品(100﹣a)件,
    根据题意列得:

    解得:20≤a≤22,
    ∵总利润W=5a+10(100﹣a)=﹣5a+1000,W是关于a的一次函数,W随a的增大而减小,
    ∴当a=20时,W有最大值,此时W=900,且100﹣20=80,
    答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
    【点睛】
    此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.
    21、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
    【解析】
    (1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
    (2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
    (3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
    【详解】
    解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
    由700x+100(100﹣x)≤40000得x≤50.
    ∴y与x之间的函数关系式为y=140x+6000(x≤50)
    (2)令y≥12600,即140x+6000≥12600,
    解得x≥47.1.
    又∵x≤50,∴经销商有以下三种进货方案:
    方案
    A品牌(块)
    B品牌(块)

    48
    52

    49
    51

    50
    50
    (3)∵140>0,∴y随x的增大而增大.
    ∴x=50时y取得最大值.
    又∵140×50+6000=13000,
    ∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
    【点睛】
    本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
    22、(1)30;(2)当x=3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
    【解析】
    (1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;
    (2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;
    (3)分两种情形列出方程即可解决问题.
    【详解】
    解:(1)根据图象信息:货车的速度V货=,
    ∵轿车到达乙地的时间为货车出发后4.5小时,
    ∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),
    此时,货车距乙地的路程为:300﹣270=30(千米).
    所以轿车到达乙地后,货车距乙地30千米.
    故答案为30;
    (2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
    ∵C(2.5,80),D(4.5,300)在其图象上,
    ,解得,
    ∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);
    易得OA:y=60x,
    ,解得,
    ∴当x=3.9时,轿车与货车相遇;
    (3)当x=2.5时,y货=150,两车相距=150﹣80=70>20,
    由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,
    解得x=3.5或4.3小时.
    答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
    【点睛】
    本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.
    23、(1),见解析;(2)125人;(3)
    【解析】
    (1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;
    (2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;
    (3)画树状图展示所有20种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解.
    【详解】
    (1)解:(1)n=20-1-3-8-5=3;
    强化训练前的中位数,
    强化训练后的平均分为(1×6+3×7+8×8+9×5+10×3)=8.3;
    强化训练后的众数为8,
    故答案为3;7.5;8.3;8;

    (2)(人)
    (3)(3)画树状图为:

    共有20种等可能的结果数,其中所抽取的两名同学恰好是一男一女的结果数为12,
    所以所抽取的两名同学恰好是一男一女的概率P=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.
    24、(1)抽样调查;12;3;(2)60;(3).
    【解析】
    试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;
    (2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;
    (3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.
    试题解析:(1)抽样调查,
    所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:

    (2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);
    (3)画树状图如下:

    列表如下:

    共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.
    考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.

    相关试卷

    浙江省逍林初中重点中学2021-2022学年中考数学模拟试题含解析: 这是一份浙江省逍林初中重点中学2021-2022学年中考数学模拟试题含解析,共19页。试卷主要包含了下列命题是假命题的是,下列各式计算正确的是等内容,欢迎下载使用。

    2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析: 这是一份2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列判断错误的是等内容,欢迎下载使用。

    2022年浙江省杭州市文澜中学中考考前最后一卷数学试卷含解析: 这是一份2022年浙江省杭州市文澜中学中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,化简,下面说法正确的个数有等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map