安徽省潜山市2022年中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列图案是轴对称图形的是( )
A. B. C. D.
2.在平面直角坐标系中,点P(m﹣3,2﹣m)不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.如图,已知正五边形内接于,连结,则的度数是( )
A. B. C. D.
4.下列二次根式中,最简二次根式的是( )
A. B. C. D.
5.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )
A. B.
C. D.
6.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是( )
A.r<5 B.r>5 C.r<10 D.5<r<10
7.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为( )元.(精确到百亿位)
A.2×1011 B.2×1012 C.2.0×1011 D.2.0×1010
8.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为( )
A.54° B.36° C.30° D.27°
9.下列四个几何体中,左视图为圆的是( )
A. B. C. D.
10.下列计算正确的是
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.分解因式:(2a+b)2﹣(a+2b)2= .
12.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.
13.化简:÷=_____.
14.关于x的分式方程=2的解为正实数,则实数a的取值范围为_____.
15.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是 .
16.关于x的一元二次方程有实数根,则a的取值范围是 __________.
17.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______.
三、解答题(共7小题,满分69分)
18.(10分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.
(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;
(2)求证:四边形ABCE是矩形.
19.(5分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.
20.(8分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
每台甲型收割机的租金
每台乙型收割机的租金
A地区
1800
1600
B地区
1600
1200
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
21.(10分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?
22.(10分)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),
B(3,n)两点.求一次函数关系式;根据图象直接写出kx+b﹣>0的x的取值范围;求△AOB的面积.
23.(12分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率.
24.(14分)在平面直角坐标系xOy中,函数(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).
(1)求a,b的值;
(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
解:A.此图形不是轴对称图形,不合题意;
B.此图形不是轴对称图形,不合题意;
C.此图形是轴对称图形,符合题意;
D.此图形不是轴对称图形,不合题意.
故选C.
2、A
【解析】
分点P的横坐标是正数和负数两种情况讨论求解.
【详解】
①m-3>0,即m>3时,
2-m<0,
所以,点P(m-3,2-m)在第四象限;
②m-3<0,即m<3时,
2-m有可能大于0,也有可能小于0,
点P(m-3,2-m)可以在第二或三象限,
综上所述,点P不可能在第一象限.
故选A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
3、C
【解析】
根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.
【详解】
∵五边形为正五边形
∴
∵
∴
∴
故选:C.
【点睛】
本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.
4、C
【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、=,被开方数含分母,不是最简二次根式;故A选项错误;
B、=,被开方数为小数,不是最简二次根式;故B选项错误;
C、,是最简二次根式;故C选项正确;
D.=,被开方数,含能开得尽方的因数或因式,故D选项错误;
故选C.
考点:最简二次根式.
5、C
【解析】
根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.
【详解】
解:∵DE∥BC,
∴=,BD≠BC,
∴≠,选项A不正确;
∵DE∥BC,EF∥AB,
∴=,EF=BD,=,
∵≠,
∴≠,选项B不正确;
∵EF∥AB,
∴=,选项C正确;
∵DE∥BC,EF∥AB,
∴=,=,CE≠AE,
∴≠,选项D不正确;
故选C.
【点睛】
本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.
6、D
【解析】
延长CD交⊙D于点E,
∵∠ACB=90°,AC=12,BC=9,∴AB==15,
∵D是AB中点,∴CD=,
∵G是△ABC的重心,∴CG==5,DG=2.5,
∴CE=CD+DE=CD+DF=10,
∵⊙C与⊙D相交,⊙C的半径为r,
∴ ,
故选D.
【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.
7、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
2000亿元=2.0×1.
故选:C.
【点睛】
考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、D
【解析】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.
9、A
【解析】
根据三视图的法则可得出答案.
【详解】
解:左视图为从左往右看得到的视图,
A.球的左视图是圆,
B.圆柱的左视图是长方形,
C.圆锥的左视图是等腰三角形,
D.圆台的左视图是等腰梯形,
故符合题意的选项是A.
【点睛】
错因分析 较容易题.失分原因是不会判断常见几何体的三视图.
10、B
【解析】
试题分析:根据合并同类项的法则,可知,故A不正确;
根据同底数幂的除法,知,故B正确;
根据幂的乘方,知,故C不正确;
根据完全平方公式,知,故D不正确.
故选B.
点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.
二、填空题(共7小题,每小题3分,满分21分)
11、3(a+b)(a﹣b).
【解析】
(2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)= 4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)
12、2或
【解析】
分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;
(2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.
【详解】
解:(1)当时,
∵垂直平分,
.
(2)当时,过点A作于点,
在与中,
.
故答案为或.
【点睛】
本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.
13、m
【解析】
解:原式=•=m.故答案为m.
14、a<2且a≠1
【解析】
将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.
【详解】
分式方程去分母得:x+a-2a=2(x-1),
解得:x=2-a,
∵分式方程的解为正实数,
∴2-a>0,且2-a≠1,
解得:a<2且a≠1.
故答案为:a<2且a≠1.
【点睛】
分式方程的解.
15、2
【解析】
∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。
∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。
又AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°。
∴Rt△DBE中,BE=2DE=2。
16、a≤1且a≠0
【解析】
∵关于x的一元二次方程有实数根,
∴ ,解得:,
∴a的取值范围为:且 .
点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此 ;
(2)这道一元二次方程有实数根,因此 ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.
17、16或1
【解析】
题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
(1)当三角形的三边是5,5,6时,则周长是16;
(2)当三角形的三边是5,6,6时,则三角形的周长是1;
故它的周长是16或1.
故答案为:16或1.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
三、解答题(共7小题,满分69分)
18、 (1)见解析;(2)见解析.
【解析】
(1)根据题意作图即可;
(2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.
【详解】
(1)解:如图所示:E点即为所求;
(2)证明:∵CE⊥BC,
∴∠BCE=90°,
∵∠ABC=90°,
∴∠BCE+∠ABC=180°,
∴AB∥CE,
∴∠ABE=∠CEB,∠BAC=∠ECA,
∵BD为AC边上的中线,
∴AD=DC,
在△ABD和△CED中
,
∴△ABD≌△CED(AAS),
∴AB=EC,
∴四边形ABCE是平行四边形,
∵∠ABC=90°,
∴平行四边形ABCE是矩形.
【点睛】
本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.
19、证明见解析.
【解析】
由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.
【详解】
解:∵AD∥BC
∴∠ADB=∠DBC
∵DC⊥BC于点C,AE⊥BD于点E
∴∠C=∠AED=90°
又∵DB=DA
∴△AED≌△DCB(AAS)
∴AE=CD
【点睛】
本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.
20、(1)y=200x+74000(10≤x≤30)
(2)有三种分配方案,
方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
【解析】
(1)根据题意和表格中的数据可以得到y关于x的函数关系式;
(2)根据题意可以得到相应的不等式,从而可以解答本题;
(3)根据(1)中的函数解析式和一次函数的性质可以解答本题.
【详解】
解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,
∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);
(2)由题意可得,
200x+74000≥79600,得x≥28,
∴28≤x≤30,x为整数,
∴x=28、29、30,
∴有三种分配方案,
方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,
理由:∵y=200x+74000中y随x的增大而增大,
∴当x=30时,y取得最大值,此时y=80000,
∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
【点睛】
本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.
21、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.
【解析】
(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;
(2)设每套运动服的售价为y元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%” 即可列不等式求解.
【详解】
(1)设商场第一次购进x套运动服,由题意得
解这个方程,得
经检验,是所列方程的根
.
答:商场两次共购进这种运动服600套;
(2)设每套运动服的售价为y元,由题意得
,
解这个不等式,得
答:每套运动服的售价至少是200元.
【点睛】
此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解.
22、(1)y=-2x+1 ;(2)1<x<2 ;(2)△AOB的面积为1 .
【解析】
试题分析:(1)首先根据A(m,6),B(2,n)两点在反比例函数y=(x>0)的图象上,求出m,n的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x的取值范围即可.
(2)由-2x+1-<0,求出x的取值范围即可.
(2)首先分别求出C点、D点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出△AOB的面积是多少即可.
试题解析:(1)∵A(m,6),B(2,n)两点在反比例函数y=(x>0)的图象上,
∴6=,,
解得m=1,n=2,
∴A(1,6),B(2,2),
∵A(1,6),B(2,2)在一次函数y=kx+b的图象上,
∴,
解得,
∴y=-2x+1.
(2)由-2x+1-<0,
解得0<x<1或x>2.
(2)当x=0时,
y=-2×0+1=1,
∴C点的坐标是(0,1);
当y=0时,
0=-2x+1,
解得x=4,
∴D点的坐标是(4,0);
∴S△AOB=×4×1-×1×1-×4×2=16-4-4=1.
23、(1);(2) .
【解析】
试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.
试题解析:
解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;
(2)树状图如下,
由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是.
考点:用列举法求概率.
24、(1)a=3,b=-2;(2) m≥8或m≤-2
【解析】
(1)把A点坐标代入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:①当S△ABC=S△BCD+S△ABD=6时,利用三角形的面积求出m的值,②当S△ABC=S△BCD−S△ABD=6时,利用三角形的面积求出m的值,从而得出m的取值范围.
【详解】
(1)∵点A在图象上
∴
∴a=3
∴A(3,1)
∵点A在y=x+b图象上
∴1=3+b
∴b=-2
∴解析式y=x-2
(2)设直线y=x-2与x轴的交点为D
∴D(2,0)
①当点C在点A的上方如图(1)
∵直线y=-x+m与x轴交点为B
∴B(m,0)(m>3)
∵直线y=-x+m与直线y=x-2相交于点C
∴
解得:
∴C
∵S△ABC=S△BCD-S△ABD≥6
∴
∴m≥8
②若点C在点A下方如图2
∵S△ABC=S△BCD+S△ABD≥6
∴
∴m≤-2
综上所述,m≥8或m≤-2
【点睛】
此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.
2022年河北省唐山市古治区中考押题数学预测卷含解析: 这是一份2022年河北省唐山市古治区中考押题数学预测卷含解析,共15页。试卷主要包含了在平面直角坐标系中,将点P等内容,欢迎下载使用。
2022届江苏省苏州昆山市达标名校中考押题数学预测卷含解析: 这是一份2022届江苏省苏州昆山市达标名校中考押题数学预测卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,tan45°的值等于,下列运算结果正确的是,下列计算,正确的是等内容,欢迎下载使用。
安徽省怀远县2021-2022学年中考押题数学预测卷含解析: 这是一份安徽省怀远县2021-2022学年中考押题数学预测卷含解析,共19页。