


安徽省六安皋城中学2021-2022学年中考数学五模试卷含解析
展开
这是一份安徽省六安皋城中学2021-2022学年中考数学五模试卷含解析,共21页。试卷主要包含了下列运算正确的是,估计的值在等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示.下面有四个推断:
①年用水量不超过180m1的该市居民家庭按第一档水价交费;
②年用水量不超过240m1的该市居民家庭按第三档水价交费;
③该市居民家庭年用水量的中位数在150~180m1之间;
④该市居民家庭年用水量的众数约为110m1.
其中合理的是( )
A.①③ B.①④ C.②③ D.②④
2.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为( )
A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定
3.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )
A. B. C. D.
4.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )
A. B. C. D.
5.已知x﹣2y=3,那么代数式3﹣2x+4y的值是( )
A.﹣3 B.0 C.6 D.9
6.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是( )
A. B. C. D.
7.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( )
A. B. C. D.
8.下列运算正确的是( )
A.5ab﹣ab=4 B.a6÷a2=a4
C. D.(a2b)3=a5b3
9.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件个,依题意列方程为( )
A. B.
C. D.
10.估计的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
11.一元二次方程的根的情况是
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法判断
12.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是( )
A.135° B.120° C.60° D.45°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分解因式:a3b+2a2b2+ab3=_____.
14.抛掷一枚均匀的硬币,前3次都正面朝上,第4次正面朝上的概率为________.
15.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)
16.如图,在△ABC中,BC=7,,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围______.
17.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.
18.点G是三角形ABC的重心,,,那么 =_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)
20.(6分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.
21.(6分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.
(Ⅰ)收集、整理数据
请将表格补充完整:
(Ⅱ)描述数据
为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;
(Ⅲ)分析数据、做出推测
预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.
22.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.
23.(8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:
AQI指数
质量等级
天数(天)
0-50
优
m
51-100
良
44
101-150
轻度污染
n
151-200
中度污染
4
201-300
重度污染
2
300以上
严重污染
2
(1)统计表中m= ,n= ,扇形统计图中,空气质量等级为“良”的天数占 %;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?
24.(10分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)
25.(10分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
26.(12分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:
(1)本次调查了 名学生,扇形统计图中“1部”所在扇形的圆心角为 度,并补全条形统计图;
(2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;
(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率.
27.(12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.
(1)求一次至少购买多少只计算器,才能以最低价购买?
(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;
(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
利用条形统计图结合中位数和中位数的定义分别分析得出答案.
【详解】
①由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),
×100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;
②∵年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),
∴×100%=7%≠5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;
③∵5万个数据的中间是第25000和25001的平均数,
∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误;
④该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,
故选B.
【点睛】
此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键.
2、A
【解析】
直接利用圆周角定理结合三角形的外角的性质即可得.
【详解】
连接BE,如图所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故选:A.
【点睛】
考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.
3、B
【解析】
根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.
【详解】
∵B1A2=B1B2,∠A1B1O=α,
∴∠A2B2O=α,
同理∠A3B3O=×α=α,
∠A4B4O=α,
∴∠AnBnO=α,
∴∠A10B10O=,
故选B.
【点睛】
本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.
4、A
【解析】
此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.
5、A
【解析】
解:∵x﹣2y=3,
∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;
故选A.
6、D
【解析】
设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.
【详解】
设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,
∵△ABC放大到原来的2倍得到△A′B′C,
∴2(﹣1﹣x)=a+1,
解得x=﹣(a+3),
故选:D.
【点睛】
本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.
7、D
【解析】
一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.
【详解】
根据题意 :从袋中任意摸出一个球,是白球的概率为==.
故答案为D
【点睛】
此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
8、B
【解析】
由整数指数幂和分式的运算的法则计算可得答案.
【详解】
A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
C项,根据分式的加法法则可得:,故C项错误;
D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
故本题正确答案为B.
【点睛】
幂的运算法则:
(1) 同底数幂的乘法: (m、n都是正整数)
(2)幂的乘方:(m、n都是正整数)
(3)积的乘方: (n是正整数)
(4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
(5)零次幂:(a≠0)
(6) 负整数次幂: (a≠0, p是正整数).
9、A
【解析】
设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.
【详解】
设原计划每天生产零件x个,则实际每天生产零件为1.5x个,
由题意得,
故选:A.
【点睛】
本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.
10、D
【解析】
寻找小于26的最大平方数和大于26的最小平方数即可.
【详解】
解:小于26的最大平方数为25,大于26的最小平方数为36,故,即:
,故选择D.
【点睛】
本题考查了二次根式的相关定义.
11、A
【解析】
把a=1,b=-1,c=-1,代入,然后计算,最后根据计算结果判断方程根的情况.
【详解】
方程有两个不相等的实数根.
故选A.
【点睛】
本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.
12、B
【解析】
易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.
【详解】
∵四边形ABCD是正方形,
∴AB=AD,∠BAF=∠DAF,
∴△ABF≌△ADF,
∴∠AFD=∠AFB,
∵CB=CE,
∴∠CBE=∠CEB,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,
∴∠CBE=15°,
∵∠ACB=45°,
∴∠AFB=∠ACB+∠CBE=60°.
∴∠AFE=120°.
故选B.
【点睛】
此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、ab(a+b)1.
【解析】
a3b+1a1b1+ab3=ab(a1+1ab+b1)=ab(a+b)1.
故答案为ab(a+b)1.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.
14、
【解析】
根据概率的计算方法求解即可.
【详解】
∵第4次抛掷一枚均匀的硬币时,正面和反面朝上的概率相等,
∴第4次正面朝上的概率为.
故答案为:.
【点睛】
此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
15、下降
【解析】
根据抛物线y=3x2+2x图像性质可得,在对称轴的左侧部分是下降的.
【详解】
解:∵在中,,
∴抛物线开口向上,
∴在对称轴左侧部分y随x的增大而减小,即图象是下降的,
故答案为下降.
【点睛】
本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.
16、
【解析】
分析:根据题意作出合适的辅助线,然后根据题意即可求得PB的取值范围.
详解:作AD⊥BC于点D,作PE⊥BC于点E.∵在△ABC 中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由题意可得,当PB=PC时,点C恰好在以点P为圆心,PB为半径圆上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案为0<PB<.
点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、1:1.
【解析】
试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.
考点:相似三角形的性质.
18、.
【解析】
根据题意画出图形,由,,根据三角形法则,即可求得的长,又由点G是△ABC的重心,根据重心的性质,即可求得.
【详解】
如图:BD是△ABC的中线,
∵,
∴=,
∵,
∴=﹣,
∵点G是△ABC的重心,
∴==﹣,
故答案为: ﹣.
【点睛】
本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其几何意义,是基础题目.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)2;(2)宣传牌CD高(20﹣1)m.
【解析】
试题分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到结果BH=ABsin∠BAH=1sin30°=1×=2;
(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如图,过点B作BF⊥CE,垂足为F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得结果.
试题解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.
答:点B距水平面AE的高度BH是2米;
(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如图,过点B作BF⊥CE,垂足为F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:广告牌CD的高度约为(20﹣1)米.
20、1
【解析】解:
取时,原式.
21、(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%.
【解析】
(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测 2019 年增加的百分比接近3% .
【详解】
(Ⅰ)
年份
2014
2015
2016
2017
2018
动车组发送旅客量 a 亿人次
0.87
1.14
1.46
1.80
2.17
铁路发送旅客总量 b 亿人次
2.52
2.76
3.07
3.42
3.82
动车组发送旅客量占比× 100
34.5 %
41.3 %
47.6 %
52.6 %
56.8 %
(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,
故答案为折线图;
(Ⅲ)预估 2019 年春运期间动车组发送旅客量占比约为 60%,
预估理由是之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%.
【点睛】
本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.
22、(1)50人;(2)补图见解析;(3).
【解析】
分析:(1)根据化学学科人数及其所占百分比可得总人数;
(2)根据各学科人数之和等于总人数求得历史的人数即可;
(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.
详解:(1)该班学生总数为10÷20%=50人;
(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,
补全图形如下:
(3)列表如下:
化学
生物
政治
历史
地理
化学
生物、化学
政治、化学
历史、化学
地理、化学
生物
化学、生物
政治、生物
历史、生物
地理、生物
政治
化学、政治
生物、政治
历史、政治
地理、政治
历史
化学、历史
生物、历史
政治、历史
地理、历史
地理
化学、地理
生物、地理
政治、地理
历史、地理
由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,
所以该同学恰好选中化学、历史两科的概率为.
点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
23、 (1)m=20,n=8;55;(2) 答案见解析.
【解析】
(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;
(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.
【详解】
(1)∵m=80×25%=20,n=80-20-44-4-2-2=8,
∴空气质量等级为“良”的天数占:×100%=55%.
故答案为20,8,55;
(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),
答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;
补全统计图:
【点睛】
此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
24、DE的长度为6+1.
【解析】
根据相似三角形的判定与性质解答即可.
【详解】
解:过E作EF⊥BC,
∵∠CDE=120°,
∴∠EDF=60°,
设EF为x,DF=x,
∵∠B=∠EFC=90°,
∵∠ACB=∠ECD,
∴△ABC∽△EFC,
∴,
即,
解得:x=9+2,
∴DE==6+1,
答:DE的长度为6+1.
【点睛】
本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
25、(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y=700x,当10<x≤1时,y=﹣5x2+750x,当x>1时,y=300x;(3)公司应将最低销售单价调整为2875元.
【解析】
(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;
(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;
(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.
【详解】
(1)设商家一次购买这种产品x件时,销售单价恰好为2800元.
由题意得:3200﹣5(x﹣10)=2800,解得:x=1.
答:商家一次购买这种产品1件时,销售单价恰好为2800元;
(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:
当0≤x≤10时,y=(3200﹣2500)x=700x,
当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,
当x>1时,y=(2800﹣2500)•x=300x;
(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,
函数y=700x,y=300x均是y随x增大而增大,
而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.
由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,
最低价为3200﹣5•(75﹣10)=2875元,
答:公司应将最低销售单价调整为2875元.
【点睛】
本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.
26、(1)40、126(2)240人(3)
【解析】
(1)用2部的人数10除以2部人数所占的百分比25%即可求出本次调查的学生数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;
(2)用1600乘以4部所占的百分比即可;
(3)根据树状图所得的结果,判断他们选中同一名著的概率.
【详解】
(1)调查的总人数为:10÷25%=40,
∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,
则扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;
故答案为40、126;
(2)预估其中4部都读完了的学生有1600×=240人;
(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,
画树状图可得:
共有16种等可能的结果,其中选中同一名著的有4种,
故P(两人选中同一名著)==.
【点睛】
本题考查了扇形统计图和条形统计图的综合,用样本估计总体,列表法或树状图法求概率.解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.
27、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.
【解析】
试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;
(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;
(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.
试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.
答:一次至少买1只,才能以最低价购买;
(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;
综上所述:;
(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.
②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.
且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.
即出现了卖46只赚的钱比卖1只赚的钱多的现象.
当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.
考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.
相关试卷
这是一份2023年安徽省六安市金安区皋城中学中考二模数学试题(含解析),共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年安徽省六安市金安区皋城中学九年级(下)期中数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省六安皋城中学2022年中考数学考前最后一卷含解析,共23页。试卷主要包含了如图,O为原点,点A的坐标为,下列计算正确的是,已知,则的值为等内容,欢迎下载使用。