![安徽无为尚文校2021-2022学年中考数学五模试卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13448092/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽无为尚文校2021-2022学年中考数学五模试卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13448092/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽无为尚文校2021-2022学年中考数学五模试卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13448092/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
安徽无为尚文校2021-2022学年中考数学五模试卷含解析
展开
这是一份安徽无为尚文校2021-2022学年中考数学五模试卷含解析,共19页。试卷主要包含了下列计算正确的是,如图,,则的度数为,下列运算正确的是,下列事件是确定事件的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列各数是不等式组的解是( )
A.0 B. C.2 D.3
2.如图所示的几何体的主视图正确的是( )
A. B. C. D.
3.下列计算正确的是( )
A. B. C. D.
4.把多项式ax3﹣2ax2+ax分解因式,结果正确的是( )
A.ax(x2﹣2x) B.ax2(x﹣2)
C.ax(x+1)(x﹣1) D.ax(x﹣1)2
5.如图,,则的度数为( )
A.115° B.110° C.105° D.65°
6.在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,所得抛物线的解析式是( ).
A. B.
C. D.
7.下列运算正确的是( )
A.=x5 B. C.·= D.3+2
8.下列事件是确定事件的是( )
A.阴天一定会下雨
B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门
C.打开电视机,任选一个频道,屏幕上正在播放新闻联播
D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书
9.如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO=2,OB=1,BC=2,则下列结论正确的是( )
A. B. C. D.
10.某射手在同一条件下进行射击,结果如下表所示:
射击次数(n)
10
20
50
100
200
500
……
击中靶心次数(m)
8
19
44
92
178
451
……
击中靶心频率()
0.80
0.95
0.88
0.92
0.89
0.90
……
由此表推断这个射手射击1次,击中靶心的概率是( )
A.0.6 B.0.7 C.0.8 D.0.9
11.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为( )
A.2π B.4π C.5π D.6π
12.如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是
A.5:2 B.3:2 C.3:1 D.2:1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.
14.化简:______.
15.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是 cm(结果保留根号).
16.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
17.如图,点A在反比例函数y=(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_____.
18.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?
20.(6分)已知关于x的一元二次方程有实数根.
(1)求k的取值范围;
(2)若k为正整数,且方程有两个非零的整数根,求k的取值.
21.(6分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
22.(8分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=,求BC和BF的长.
23.(8分)先化简,再求值÷(x﹣),其中x=.
24.(10分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF相交于点F,已知,.
求AD的长;
求证:FC是的切线.
25.(10分)如图 1,在等腰△ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD.在线段 AD 上任取一点 P,连接 PB,PE.若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y.
小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:
(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:
x
0
1
2
3
4
5
6
y
5.2
4.2
4.6
5.9
7.6
9.5
说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)
(2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置.
26.(12分) (y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.
求的值.
27.(12分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
求出不等式组的解集,判断即可.
【详解】
,
由①得:x>-1,
由②得:x>2,
则不等式组的解集为x>2,即3是不等式组的解,
故选D.
【点睛】
此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
2、D
【解析】
主视图是从前向后看,即可得图像.
【详解】
主视图是一个矩形和一个三角形构成.故选D.
3、A
【解析】
原式各项计算得到结果,即可做出判断.
【详解】
A、原式=,正确;
B、原式不能合并,错误;
C、原式=,错误;
D、原式=2,错误.
故选A.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
4、D
【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.
【详解】
原式=ax(x2﹣2x+1)=ax(x﹣1)2,
故选D.
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
5、A
【解析】
根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.
【详解】
∵∠AFD=65°,
∴∠CFB=65°,
∵CD∥EB,
∴∠B=180°−65°=115°,
故选:A.
【点睛】
本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.
6、B
【解析】
把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.
【详解】
解:∵y=x2+2x+3=(x+1)2+2,
∴原抛物线的顶点坐标为(-1,2),
令x=0,则y=3,
∴抛物线与y轴的交点坐标为(0,3),
∵抛物线绕与y轴的交点旋转180°,
∴所得抛物线的顶点坐标为(1,4),
∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].
故选:B.
【点睛】
本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.
7、B
【解析】
根据幂的运算法则及整式的加减运算即可判断.
【详解】
A. =x6,故错误;
B. ,正确;
C. ·=,故错误;
D. 3+2 不能合并,故错误,
故选B.
【点睛】
此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.
8、D
【解析】
试题分析:找到一定发生或一定不发生的事件即可.
A、阴天一定会下雨,是随机事件;
B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;
C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;
D、在学校操场上向上抛出的篮球一定会下落,是必然事件.
故选D.
考点:随机事件.
9、C
【解析】
根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.
【详解】
解:∵AO=2,OB=1,BC=2,
∴a=-2,b=1,c=3,
∴|a|≠|c|,ab<0,,,
故选:C.
【点睛】
此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.
10、D
【解析】
观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.
【详解】
依题意得击中靶心频率为0.90,
估计这名射手射击一次,击中靶心的概率约为0.90.
故选:D.
【点睛】
此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.
11、B
【解析】
连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.
【详解】
连接OA、OC,
∵∠ADC=60°,
∴∠AOC=2∠ADC=120°,
则劣弧AC的长为: =4π.
故选B.
【点睛】
本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式 .
12、C
【解析】
求出正六边形和阴影部分的面积即可解决问题;
【详解】
解:正六边形的面积,
阴影部分的面积,
空白部分与阴影部分面积之比是::1,
故选C.
【点睛】
本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.
【解析】
由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD=OC−OD求出CD.
【详解】
解:∵CD⊥AB,AB=16,
∴AD=DB=8,
在Rt△OAD中,AB=16m,半径OA=10m,
∴OD==6,
∴CD=OC﹣OD=10﹣6=1(m).
故答案为1.
【点睛】
本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.
14、3
【解析】
分析:根据算术平方根的概念求解即可.
详解:因为32=9
所以=3.
故答案为3.
点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.
15、24+24
【解析】
仔细观察梯形从而发现其各边与原正方形各边之间的关系,则不难求得梯形的周长.
【详解】
解:观察图形得MH=GN=AD=12,HG=AC,
AD=DC=12,
AC=12,
HG=6.
梯形MNGH的周长=HG+HM+MN+NG=2HM+4HG=24+24.
故答案为24+24.
【点睛】
此题主要考查学生对等腰梯形的性质及正方形的性质的运用及观察分析图形的能力.
16、6
【解析】
根据题意得,2m=3×4,解得m=6,故答案为6.
17、1.
【解析】
根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长.
【详解】
解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AE⊥x轴于点E.
∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=,∴正方形OABC的面积=OA2=1.
故答案为1.
【点睛】
本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
18、4π﹣1
【解析】
分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.
详解:
连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,
∴∠COD=45°,
∴OC=CD=4,
∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积
==4π-1.
故答案是:4π-1.
点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、原计划每天种树40棵.
【解析】
设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可.
【详解】
设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得
−=5,
解得:x=40,
经检验,x=40是原方程的解.
答:原计划每天种树40棵.
20、(1);(2)k=1
【解析】
(1)根据一元二次方程2x2+4x+k﹣1=0有实数根,可得出△≥0,解不等式即可得出结论;
(2)分别把k的正整数值代入方程2x2+4x+k﹣1=0,根据解方程的结果进行分析解答.
【详解】
(1)由题意得:△=16﹣8(k﹣1)≥0,∴k≤1.
(2)∵k为正整数,∴k=1,2,1.
当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x =0,解得:x=0或x=-2,有一个根为零;
当k=2时,方程2x2+4x+k﹣1=0变为:2x2+4x +1=0,解得:x=,无整数根;
当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x +2=0,解得:x1=x2=-1,有两个非零的整数根.
综上所述:k=1.
【点睛】
本题考查了一元二次方程根的判别式:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(1)△<0⇔方程没有实数根.
21、(1)见解析(2)见解析
【解析】
(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.
(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.
【详解】
解:(1)证明:∵AF∥BC,
∴∠AFE=∠DBE.
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD.
在△AFE和△DBE中,
∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,
∴△AFE≌△DBE(AAS)
∴AF=BD.
∴AF=DC.
(2)四边形ADCF是菱形,证明如下:
∵AF∥BC,AF=DC,
∴四边形ADCF是平行四边形.
∵AC⊥AB,AD是斜边BC的中线,
∴AD=DC.
∴平行四边形ADCF是菱形
22、(1)证明见解析;(2)BC=;.
【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.
(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.
(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴∠1=∠CAB.
∵∠CBF=∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)解:过点C作CG⊥AB于G.
∵sin∠CBF=,∠1=∠CBF,
∴sin∠1=,
∵在Rt△AEB中,∠AEB=90°,AB=5,
∴BE=AB•sin∠1=,
∵AB=AC,∠AEB=90°,
∴BC=2BE=2,
在Rt△ABE中,由勾股定理得AE==2,
∴sin∠2===,cos∠2===,
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3,
∵GC∥BF,
∴△AGC∽△ABF,
∴=.
∴BF==.
23、6
【解析】
【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.
【详解】原式=
=
=,
当x=,原式==6.
【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.
24、(1);(2)证明见解析.
【解析】
(1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;
(2)连接OF、OC,先证明四边形AFCD是菱形,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.
【详解】
证明:连接OD,
是的直径,,
,
设,
,
,
在中,,
,
解得:,
,,
,
在中,;
连接OF、OC,
是切线,
,
,
,
,
四边形FADC是平行四边形,
,
平行四边形FADC是菱形
,
,
,
,
,
即,
即,
点C在上,
是的切线.
【点睛】
此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
25、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD上靠近D点三等分点处.
【解析】
(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
【详解】
(1)根据题意,作图得,y=4.5故答案为:4.5
(2)根据数据画图得
(3)根据图象,函数 y 的最小值为 4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
【点睛】
本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.
26、1
【解析】
通过已知等式化简得到未知量的关系,代入目标式子求值.
【详解】
∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.
∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,
∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,
∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,
∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.
∵x,y,z均为实数,
∴x=y=z.
∴
27、.
【解析】
先计算括号里面的,再利用除法化简原式,
【详解】
,
= ,
= ,
=,
=,
由a2+a﹣6=0,得a=﹣3或a=2,
∵a﹣2≠0,
∴a≠2,
∴a=﹣3,
当a=﹣3时,原式=.
【点睛】
本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算.
相关试卷
这是一份2023年安徽省芜湖市无为市中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年安徽省芜湖市无为市中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年安徽省芜湖市无为县中考数学三模试卷(含解析),共23页。试卷主要包含了0分,0分),0分),【答案】A,【答案】C,【答案】D等内容,欢迎下载使用。