搜索
    上传资料 赚现金
    英语朗读宝

    白山市重点中学2022年中考数学五模试卷含解析

    白山市重点中学2022年中考数学五模试卷含解析第1页
    白山市重点中学2022年中考数学五模试卷含解析第2页
    白山市重点中学2022年中考数学五模试卷含解析第3页
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    白山市重点中学2022年中考数学五模试卷含解析

    展开

    这是一份白山市重点中学2022年中考数学五模试卷含解析,共16页。试卷主要包含了cs45°的值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.-2的绝对值是()
    A.2 B.-2 C.±2 D.
    2.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )
    A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.5
    3.不等式组的解集在数轴上表示正确的是( )
    A. B.
    C. D.
    4.如图,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为(  )

    A.2 B.4 C.2 D.4
    5.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
    A. B. C. D.
    6.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为(  )
    A.10 B.14 C.10或14 D.8或10
    7.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是(  )

    A.①③ B.②③ C.③④ D.②④
    8.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )
    A.-4或-14 B.-4或14 C.4或-14 D.4或14
    9.如图,矩形ABCD内接于⊙O,点P是上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为(  )

    A. B. C. D.
    10.cos45°的值是(     )
    A.                                         B.                                         C.                                         D.1
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知a+b=1,那么a2-b2+2b=________.
    12.一元二次方程有两个不相等的实数根,则的取值范围是________.
    13.因式分解:-3x2+3x=________.
    14.点A(a,b)与点B(﹣3,4)关于y轴对称,则a+b的值为_____.
    15.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.

    16.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于________.

    17.计算:6﹣=_____
    三、解答题(共7小题,满分69分)
    18.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,.
    请在如图所示的网格平面内作出平面直角坐标系;请作出关于轴对称的;点的坐标为   .的面积为   .
    19.(5分)如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.

    (1)求证:PA是⊙O的切线;
    (2)若PD=,求⊙O的直径.
    20.(8分)先化简,再求值:,其中x=-5
    21.(10分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?
    22.(10分)已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.
    23.(12分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
    (1)请直接写出⊙M的直径,并求证BD平分∠ABO;
    (2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.

    24.(14分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据绝对值的性质进行解答即可
    【详解】
    解:﹣1的绝对值是:1.
    故选:A.
    【点睛】
    此题考查绝对值,难度不大
    2、D
    【解析】
    根据平均数、中位数、众数和方差的定义逐一求解可得.
    【详解】
    解:A、平均数为=3,正确;
    B、重新排列为1、2、3、3、6,则中位数为3,正确;
    C、众数为3,正确;
    D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;
    故选:D.
    【点睛】
    本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    3、C
    【解析】
    分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.
    【详解】
    解:解不等式﹣x+7<x+3得:x>2,
    解不等式3x﹣5≤7得:x≤4,
    ∴不等式组的解集为:2<x≤4,
    故选:C.
    【点睛】
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    4、C
    【解析】
    根据等腰三角形的性质和勾股定理解答即可.
    【详解】
    解:∵点A,D分别对应数轴上的实数﹣2,2,
    ∴AD=4,
    ∵等腰△ABC的底边BC与底边上的高AD相等,
    ∴BC=4,
    ∴CD=2,
    在Rt△ACD中,AC=,
    故选:C.
    【点睛】
    此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.
    5、A
    【解析】
    分析:甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,。故选A。
    6、B
    【解析】
    试题分析: ∵2是关于x的方程x2﹣2mx+3m=0的一个根,
    ∴22﹣4m+3m=0,m=4,
    ∴x2﹣8x+12=0,
    解得x1=2,x2=1.
    ①当1是腰时,2是底边,此时周长=1+1+2=2;
    ②当1是底边时,2是腰,2+2<1,不能构成三角形.
    所以它的周长是2.
    考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.
    7、D
    【解析】
    ①错误.由题意a>1.b>1,c<1,abc<1;
    ②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;
    ③错误.抛物线与x轴的另一个交点是(1,1);
    ④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    【详解】
    解:∵抛物线开口向上,∴a>1,
    ∵抛物线交y轴于负半轴,∴c<1,
    ∵对称轴在y轴左边,∴- <1,
    ∴b>1,
    ∴abc<1,故①错误.
    ∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,
    当ax2+bx+c<mx+n时,-3<x<-1;
    即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,
    抛物线与x轴的另一个交点是(1,1),故③错误,
    ∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,
    ∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    故选:D.
    【点睛】
    本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.
    8、D
    【解析】
    根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.
    【详解】
    ∵一条抛物线的函数表达式为y=x2+6x+m,
    ∴这条抛物线的顶点为(-3,m-9),
    ∴关于x轴对称的抛物线的顶点(-3,9-m),
    ∵它们的顶点相距10个单位长度.
    ∴|m-9-(9-m)|=10,
    ∴2m-18=±10,
    当2m-18=10时,m=1,
    当2m-18=-10时,m=4,
    ∴m的值是4或1.
    故选D.
    【点睛】
    本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.
    9、A
    【解析】
    连接BD,根据圆周角定理可得cos∠BDC=cos∠BPC,又BD为直径,则∠BCD=90°,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cos∠BDC===,即可得出结论.
    【详解】
    连接BD,
    ∵四边形ABCD为矩形,
    ∴BD过圆心O,
    ∵∠BDC=∠BPC(圆周角定理)
    ∴cos∠BDC=cos∠BPC
    ∵BD为直径,
    ∴∠BCD=90°,
    ∵=,
    ∴设DC为x,
    则BC为2x,
    ∴BD===x,
    ∴cos∠BDC===,
    ∵cos∠BDC=cos∠BPC,
    ∴cos∠BPC=.
    故答案选A.

    【点睛】
    本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.
    10、C
    【解析】
    本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.
    【详解】
    cos45°= .
    故选:C.
    【点睛】
    本题考查特殊角的三角函数值.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    解:∵a+b=1,
    ∴原式=
    故答案为1.
    【点睛】
    本题考查的是平方差公式的灵活运用.
    12、且
    【解析】
    根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.
    【详解】
    由题意可得,1−k≠0,△=4+4(1−k)>0,
    ∴k<2且k≠1.
    故答案为k<2且k≠1.
    【点睛】
    本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.
    13、-3x(x-1)
    【解析】
    原式提取公因式即可得到结果.
    【详解】
    解:原式=-3x(x-1),
    故答案为-3x(x-1)
    【点睛】
    此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.
    14、1
    【解析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.
    【详解】
    解:∵点与点 关于y轴对称,


    故答案为1.
    【点睛】
    考查关于轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数.
    15、5或1.
    【解析】
    先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.
    【详解】
    ∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,
    ∴AB=5,
    ∵以AD为折痕△ABD折叠得到△AB′D,
    ∴BD=DB′,AB′=AB=5.
    如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.

    设BD=DB′=x,则AF=6+x,FB′=8-x.
    在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.
    解得:x1=5,x5=0(舍去).
    ∴BD=5.
    如图5所示:当∠B′ED=90°时,C与点E重合.

    ∵AB′=5,AC=6,
    ∴B′E=5.
    设BD=DB′=x,则CD=8-x.
    在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.
    解得:x=1.
    ∴BD=1.
    综上所述,BD的长为5或1.
    16、70°
    【解析】
    试题分析:由平角的定义可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因为a∥b,所以∠4=∠1=70°.
    故答案为70°.
    考点:角的计算;平行线的性质.
    17、3
    【解析】
    按照二次根式的运算法则进行运算即可.
    【详解】

    【点睛】
    本题考查的知识点是二次根式的运算,解题关键是注意化简算式.

    三、解答题(共7小题,满分69分)
    18、(1)见解析;(2)见解析;(3);(4)4.
    【解析】
    (1)根据C点坐标确定原点位置,然后作出坐标系即可;
    (2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;
    (3)根据点在坐标系中的位置写出其坐标即可
    (4)利用长方形的面积剪去周围多余三角形的面积即可.
    【详解】
    解:(1)如图所示:
    (2)如图所示:
    (3)结合图形可得:;
    (4) .

    【点睛】
    此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.
    19、(1)见解析(2)2
    【解析】
    解:(1)证明:连接OA,
    ∵∠B=600,∴∠AOC=2∠B=1.
    ∵OA=OC,∴∠OAC=∠OCA=2.
    又∵AP=AC,∴∠P=∠ACP=2.
    ∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.
    ∵OA是⊙O的半径,∴PA是⊙O的切线.

    (2)在Rt△OAP中,∵∠P=2,
    ∴PO=2OA=OD+PD.
    又∵OA=OD,∴PD=OA.
    ∵PD=,∴2OA=2PD=2.
    ∴⊙O的直径为2..
    (1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出
    ∠P=2,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论.
    (2)利用含2的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.
    20、,-
    【解析】
    分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.
    详解:


    当时,原式.
    点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.
    21、原计划每天种树40棵.
    【解析】
    设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可.
    【详解】
    设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得
    −=5,
    解得:x=40,
    经检验,x=40是原方程的解.
    答:原计划每天种树40棵.
    22、等腰直角三角形
    【解析】
    首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.
    【详解】
    解:∵a2c2-b2c2=a4-b4,
    ∴a4-b4-a2c2+b2c2=0,
    ∴(a4-b4)-(a2c2-b2c2)=0,
    ∴(a2+b2)(a2-b2)-c2(a2-b2)=0,
    ∴(a2+b2-c2)(a2-b2)=0
    得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,
    即△ABC为直角三角形或等腰三角形或等腰直角三角形.
    考点:勾股定理的逆定理.
    23、(1)详见解析;(2)(,1).
    【解析】
    (1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
    (2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
    【详解】
    (1)∵点A(,0)与点B(0,﹣1),
    ∴OA=,OB=1,
    ∴AB==2,
    ∵AB是⊙M的直径,
    ∴⊙M的直径为2,
    ∵∠COD=∠CBO,∠COD=∠CBA,
    ∴∠CBO=∠CBA,
    即BD平分∠ABO;
    (2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
    ∵在Rt△ACB中,tan∠OAB=,
    ∴∠OAB=30°,
    ∵∠ABO=90°,
    ∴∠OBA=60°,
    ∴∠ABC=∠OBC==30°,
    ∴OC=OB•tan30°=1×,
    ∴AC=OA﹣OC=,
    ∴∠ACE=∠ABC+∠OAB=60°,
    ∴∠EAC=60°,
    ∴△ACE是等边三角形,
    ∴AE=AC=,
    ∴AF=AE=,EF==1,
    ∴OF=OA﹣AF=,
    ∴点E的坐标为(,1).

    【点睛】
    此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
    24、
    【解析】
    过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根据AD+BD=AB列方程求解可得.
    【详解】
    解:过点C作CD⊥AB于点D,

    设CD=x,
    ∵∠CBD=45°,
    ∴BD=CD=x,
    在Rt△ACD中,
    ∵,
    ∴AD====x,
    由AD+BD=AB可得x+x=10,
    解得:x=5﹣5,
    答:飞机飞行的高度为(5﹣5)km.

    相关试卷

    南昌市重点中学2022年中考数学五模试卷含解析:

    这是一份南昌市重点中学2022年中考数学五模试卷含解析,共17页。试卷主要包含了如果,则a的取值范围是等内容,欢迎下载使用。

    2022年重点中学中考数学五模试卷含解析:

    这是一份2022年重点中学中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程时,去分母后变形为等内容,欢迎下载使用。

    2022年白山市重点中学中考数学五模试卷含解析:

    这是一份2022年白山市重点中学中考数学五模试卷含解析,共20页。试卷主要包含了下面的几何体中,主视图为圆的是,如图,直线与y轴交于点,今年春节某一天早7等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map