|试卷下载
搜索
    上传资料 赚现金
    安徽省颍上县第五中学2021-2022学年中考四模数学试题含解析
    立即下载
    加入资料篮
    安徽省颍上县第五中学2021-2022学年中考四模数学试题含解析01
    安徽省颍上县第五中学2021-2022学年中考四模数学试题含解析02
    安徽省颍上县第五中学2021-2022学年中考四模数学试题含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省颍上县第五中学2021-2022学年中考四模数学试题含解析

    展开
    这是一份安徽省颍上县第五中学2021-2022学年中考四模数学试题含解析,共27页。试卷主要包含了计算a•a2的结果是,下列计算正确的是,计算结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(  )
    A.1种 B.2种 C.3种 D.4种
    2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是(  )

    A.1 B.2 C.3 D.4
    3.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为(  )

    A.﹣4 B.7﹣4 C.6﹣ D.
    4.计算的结果为(  )
    A.2 B.1 C.0 D.﹣1
    5.计算a•a2的结果是(  )
    A.a B.a2 C.2a2 D.a3
    6.下列计算正确的是  
    A. B. C. D.
    7.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是(  )

    A.60cm2 B.50cm2 C.40cm2 D.30cm2
    8.计算结果是( )
    A.0 B.1 C.﹣1 D.x
    9.如图,中,E是BC的中点,设,那么向量用向量表示为( )

    A. B. C. D.
    10.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是(  )

    A.AB两地相距1000千米
    B.两车出发后3小时相遇
    C.动车的速度为
    D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
    11.下列计算中,错误的是( )
    A.; B.; C.; D..
    12.计算1+2+22+23+…+22010的结果是( )
    A.22011–1 B.22011+1
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.分解因式______.
    14.不等式组的解集为____.
    15.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______.
    16.当a,b互为相反数,则代数式a2+ab﹣2的值为_____.
    17.分解因式:2x2﹣8=_____________
    18.尺规作图:过直线外一点作已知直线的平行线.
    已知:如图,直线l与直线l外一点P.
    求作:过点P与直线l平行的直线.

    作法如下:
    (1)在直线l上任取两点A、B,连接AP、BP;
    (2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;
    (3)过点P、M作直线;
    (4)直线PM即为所求.

    请回答:PM平行于l的依据是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,ABAC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
    (1)求证:AE为⊙O的切线;
    (2)当BC=4,AC=6时,求⊙O的半径;
    (3)在(2)的条件下,求线段BG的长.

    20.(6分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?
    21.(6分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.
    (1)求证:四边形AGDH为菱形;
    (2)若EF=y,求y关于x的函数关系式;
    (3)连结OF,CG.
    ①若△AOF为等腰三角形,求⊙O的面积;
    ②若BC=3,则CG+9=______.(直接写出答案).

    22.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)

    23.(8分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.

    24.(10分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;
    (2)化简:÷(1﹣)
    25.(10分)在平面直角坐标系xOy中,点C是二次函数y=mx2+4mx+4m+1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.
    (1)请你求出点A、B、C的坐标;
    (2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.

    26.(12分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
    (1)证明与推断:
    ①求证:四边形CEGF是正方形;
    ②推断:的值为   :
    (2)探究与证明:
    将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
    (3)拓展与运用:
    正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=   .

    27.(12分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.
    【详解】
    解:设毽子能买x个,跳绳能买y根,根据题意可得:
    3x+5y=35,
    y=7-x,
    ∵x、y都是正整数,
    ∴x=5时,y=4;
    x=10时,y=1;
    ∴购买方案有2种.
    故选B.
    【点睛】
    本题主要考查二元一次方程的应用,关键在于根据题意列方程.
    2、D
    【解析】
    由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①∵抛物线对称轴是y轴的右侧,
    ∴ab<0,
    ∵与y轴交于负半轴,
    ∴c<0,
    ∴abc>0,
    故①正确;
    ②∵a>0,x=﹣<1,
    ∴﹣b<2a,
    ∴2a+b>0,
    故②正确;
    ③∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,
    故③正确;
    ④当x=﹣1时,y>0,
    ∴a﹣b+c>0,
    故④正确.
    故选D.
    【点睛】
    本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
    3、A
    【解析】
    ∵O的直径AB=2,
    ∴∠C=90°,
    ∵C是弧AB的中点,
    ∴,
    ∴AC=BC,
    ∴∠CAB=∠CBA=45°,
    ∵AE,BE分别平分∠BAC和∠ABC,
    ∴∠EAB=∠EBA=22.5°,
    ∴∠AEB=180°− (∠BAC+∠CBA)=135°,
    连接EO,

    ∵∠EAB=∠EBA,
    ∴EA=EB,
    ∵OA=OB,
    ∴EO⊥AB,
    ∴EO为Rt△ABC内切圆半径,
    ∴S△ABC=(AB+AC+BC)⋅EO=AC⋅BC,
    ∴EO=−1,
    ∴AE2=AO2+EO2=12+(−1)2=4−2,
    ∴扇形EAB的面积==,△ABE的面积=AB⋅EO=−1,
    ∴弓形AB的面积=扇形EAB的面积−△ABE的面积=,
    ∴阴影部分的面积=O的面积−弓形AB的面积=−()=−4,
    故选:A.
    4、B
    【解析】
    按照分式运算规则运算即可,注意结果的化简.
    【详解】
    解:原式=,故选择B.
    【点睛】
    本题考查了分式的运算规则.
    5、D
    【解析】
    a·a2= a3.
    故选D.
    6、C
    【解析】
    根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.
    【详解】
    、与不是同类项,不能合并,此选项错误;
    、,此选项错误;
    、,此选项正确;
    、,此选项错误.
    故选:.
    【点睛】
    此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.
    7、D
    【解析】
    标注字母,根据两直线平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根据相似三角形对应边成比例求出,即,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.
    【详解】
    解:如图,∵正方形的边DE∥CF,
    ∴∠B=∠AED,
    ∵∠ADE=∠EFB=90°,
    ∴△ADE∽△EFB,
    ∴,
    ∴,
    设BF=3a,则EF=5a,
    ∴BC=3a+5a=8a,
    AC=8a×=a,
    在Rt△ABC中,AC1+BC1=AB1,
    即(a)1+(8a)1=(10+6)1,
    解得a1=,
    红、蓝两张纸片的面积之和=×a×8a-(5a)1,
    =a1-15a1,
    =a1,
    =×,
    =30cm1.
    故选D.
    【点睛】
    本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.
    8、C
    【解析】
    试题解析:.
    故选C.
    考点:分式的加减法.
    9、A
    【解析】
    根据,只要求出即可解决问题.
    【详解】
    解:四边形ABCD是平行四边形,






    故选:A.
    【点睛】
    本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    10、C
    【解析】
    可以用物理的思维来解决这道题.
    【详解】
    未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.
    【点睛】
    理解转折点的含义是解决这一类题的关键.
    11、B
    【解析】
    分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.
    详解:A.,故A正确;
    B.,故B错误;
    C..故C正确;
    D.,故D正确;
    故选B.
    点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.
    12、A
    【解析】
    可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.
    【详解】
    设S=1+2+22+23+…+22010①
    则2S=2+22+23+…+22010+22011②
    ②-①得S=22011-1.
    故选A.
    【点睛】
    本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(x+y+z)(x﹣y﹣z).
    【解析】
    当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题后三项可以为一组组成完全平方式,再用平方差公式即可.
    【详解】
    x2-y2-z2-2yz,
    =x2-(y2+z2+2yz),
    =x2-(y+z)2,
    =(x+y+z)(x-y-z).
    故答案为(x+y+z)(x-y-z).
    【点睛】
    本题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.
    14、x>1
    【解析】
    分别解出两不等式的解集再求其公共解.
    【详解】

    由①得:x>1
    由②得:x>
    ∴不等式组的解集是x>1.
    【点睛】
    求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.
    15、1
    【解析】
    首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.
    解:设黄球的个数为x个,
    根据题意得:=2/3解得:x=1.
    ∴黄球的个数为1.
    16、﹣1.
    【解析】
    分析:
    由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.
    详解:
    ∵a与b互为相反数,
    ∴a+b=0,
    ∴a1+ab-1=a(a+b)-1=0-1=-1.
    故答案为:-1.
    点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.
    17、2(x+2)(x﹣2)
    【解析】
    先提公因式,再运用平方差公式.
    【详解】
    2x2﹣8,
    =2(x2﹣4),
    =2(x+2)(x﹣2).
    【点睛】
    考核知识点:因式分解.掌握基本方法是关键.
    18、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【解析】
    利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.
    【详解】
    解:由作法得PM=AB,BM=PA,
    ∴四边形ABMP为平行四边形,
    ∴PM∥AB.
    故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【点睛】
    本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2);(3)1.
    【解析】
    (1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;
    (2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM∽△ABE,则利用相似比得到,然后解关于r的方程即可;
    (3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1.
    【详解】
    解:(1)证明:连接OM,如图1,

    ∵BM是∠ABC的平分线,
    ∴∠OBM=∠CBM,
    ∵OB=OM,
    ∴∠OBM=∠OMB,
    ∴∠CBM=∠OMB,
    ∴OM∥BC,
    ∵AB=AC,AE是∠BAC的平分线,
    ∴AE⊥BC,
    ∴OM⊥AE,
    ∴AE为⊙O的切线;
    (2)解:设⊙O的半径为r,
    ∵AB=AC=6,AE是∠BAC的平分线,
    ∴BE=CE=BC=2,
    ∵OM∥BE,
    ∴△AOM∽△ABE,
    ∴,即,解得r=,
    即设⊙O的半径为;
    (3)解:作OH⊥BE于H,如图,

    ∵OM⊥EM,ME⊥BE,
    ∴四边形OHEM为矩形,
    ∴HE=OM=,
    ∴BH=BE﹣HE=2﹣=,
    ∵OH⊥BG,
    ∴BH=HG=,
    ∴BG=2BH=1.
    20、(1)政府这个月为他承担的总差价为644元;
    (2)当销售单价定为34元时,每月可获得最大利润144元;
    (3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.
    【解析】
    试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;
    (2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;
    (3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.
    试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,
    344×(12﹣14)=344×2=644元,
    即政府这个月为他承担的总差价为644元;
    (2)依题意得,w=(x﹣14)(﹣14x+544)
    =﹣14x2+644x﹣5444
    =﹣14(x﹣34)2+144
    ∵a=﹣14<4,∴当x=34时,w有最大值144元.
    即当销售单价定为34元时,每月可获得最大利润144元;
    (3)由题意得:﹣14x2+644x﹣5444=2,
    解得:x1=24,x2=1.
    ∵a=﹣14<4,抛物线开口向下,

    ∴结合图象可知:当24≤x≤1时,w≥2.
    又∵x≤25,
    ∴当24≤x≤25时,w≥2.
    设政府每个月为他承担的总差价为p元,
    ∴p=(12﹣14)×(﹣14x+544)
    =﹣24x+3.
    ∵k=﹣24<4.
    ∴p随x的增大而减小,
    ∴当x=25时,p有最小值544元.
    即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.
    考点:二次函数的应用.
    21、(1)证明见解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.
    【解析】
    (1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;
    (2)只要证明△AEF∽△ACB,可得解决问题;
    (3)①分三种情形分别求解即可解决问题;
    ②只要证明△CFG∽△HFA,可得=,求出相应的线段即可解决问题;
    【详解】
    (1)证明:∵GH垂直平分线段AD,
    ∴HA=HD,GA=GD,
    ∵AB是直径,AB⊥GH,
    ∴EG=EH,
    ∴DG=DH,
    ∴AG=DG=DH=AH,
    ∴四边形AGDH是菱形.
    (2)解:∵AB是直径,
    ∴∠ACB=90°,
    ∵AE⊥EF,
    ∴∠AEF=∠ACB=90°,
    ∵∠EAF=∠CAB,
    ∴△AEF∽△ACB,
    ∴,
    ∴,
    ∴y=x2(x>0).
    (3)①解:如图1中,连接DF.

    ∵GH垂直平分线段AD,
    ∴FA=FD,
    ∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,
    ∴AB=,
    ∴⊙O的面积为π.
    如图2中,当AF=AO时,

    ∵AB==,
    ∴OA=,
    ∵AF==,
    ∴=,
    解得x=4(负根已经舍弃),
    ∴AB=,
    ∴⊙O的面积为8π.
    如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=,

    ∵△ACE∽△ABC,
    ∴AC2=AE•AB,
    ∴16=x•,
    解得x2=2﹣2(负根已经舍弃),
    ∴AB2=16+4x2=8+8,
    ∴⊙O的面积=π••AB2=(2+2)π
    综上所述,满足条件的⊙O的面积为π或8π或(2+2)π;
    ②如图3中,连接CG.

    ∵AC=4,BC=3,∠ACB=90°,
    ∴AB=5,
    ∴OH=OA=,
    ∴AE=,
    ∴OE=OA﹣AE=1,
    ∴EG=EH==,
    ∵EF=x2=,
    ∴FG=﹣,AF==,AH==,
    ∵∠CFG=∠AFH,∠FCG=∠AHF,
    ∴△CFG∽△HFA,
    ∴,
    ∴,
    ∴CG=﹣,
    ∴CG+9=4.
    故答案为4.
    【点睛】
    本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.
    22、(1)∠FHE=60°;(2)篮板顶端 F 到地面的距离是 4.4 米.
    【解析】
    (1)直接利用锐角三角函数关系得出cos∠FHE=,进而得出答案;
    (2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
    【详解】
    (1 )由题意可得:cos∠FHE=,则∠FHE=60°;
    (2)延长 FE 交 CB 的延长线于 M,过 A 作 AG⊥FM 于 G,

    在 Rt△ABC 中,tan∠ACB=,
    ∴AB=BC•tan75°=0.60×3.732=2.2392,
    ∴GM=AB=2.2392,
    在 Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=,
    ∴sin60°==,
    ∴FG≈2.17(m),
    ∴FM=FG+GM≈4.4(米),
    答:篮板顶端 F 到地面的距离是 4.4 米.
    【点睛】
    本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.
    23、证明见试题解析.
    【解析】
    试题分析:首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定△ABC和△DEC全等,从而得出答案.
    试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC≌△DEC ∴∠A=∠D
    考点:三角形全等的证明
    24、(1)5(2)
    【解析】
    (1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.
    【详解】
    解:(1)原式=4﹣2+2+2+1﹣4×
    =7﹣2
    =5;
    (2)原式=÷
    =•
    =.
    【点睛】
    本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.
    25、(1)A(-4,0)和B(0,4);(2)或
    【解析】
    (1)抛物线解析式配方后,确定出顶点C坐标,对于一次函数解析式,分别令x与y为0求出对应y与x的值,确定出A与B坐标;
    (2)分m>0与m<0两种情况求出m的范围即可.
    【详解】
    解:(1)y=mx2+4mx+4m+1=m(x+2)2+1,
    ∴抛物线顶点坐标为C(-2,1),
    对于y=x+4,令x=0,得到y=4;y=0,得到x=-4,
    直线y=x+4与x轴、y轴交点坐标分别为A(-4,0)和B(0,4);
    (2)把x=-4代入抛物线解析式得:y=4m+1,
    ①当m>0时,y=4m+1>0,说明抛物线的对称轴左侧总与线段AB有交点,
    ∴只需要抛物线右侧与线段AB无交点即可,
    如图1所示,

    只需要当x=0时,抛物线的函数值y=4m+1<4,即,
    则当时,抛物线与线段AB只有一个交点;
    ②当m<0时,如图2所示,

    只需y=4m+1≥0即可,
    解得:,
    综上,当或时,抛物线与线段AB只有一个交点.
    【点睛】
    此题考查了抛物线与x轴的交点,二次函数的性质,以及二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解本题的关键.
    26、(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
    【解析】
    (1)①由、结合可得四边形CEGF是矩形,再由即可得证;
    ②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
    (2)连接CG,只需证∽即可得;
    (3)证∽得,设,知,由得、、,由可得a的值.
    【详解】
    (1)①∵四边形ABCD是正方形,
    ∴∠BCD=90°,∠BCA=45°,
    ∵GE⊥BC、GF⊥CD,
    ∴∠CEG=∠CFG=∠ECF=90°,
    ∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
    ∴EG=EC,
    ∴四边形CEGF是正方形;
    ②由①知四边形CEGF是正方形,
    ∴∠CEG=∠B=90°,∠ECG=45°,
    ∴,GE∥AB,
    ∴,
    故答案为;
    (2)连接CG,

    由旋转性质知∠BCE=∠ACG=α,
    在Rt△CEG和Rt△CBA中,
    =、=,
    ∴=,
    ∴△ACG∽△BCE,
    ∴,
    ∴线段AG与BE之间的数量关系为AG=BE;
    (3)∵∠CEF=45°,点B、E、F三点共线,
    ∴∠BEC=135°,
    ∵△ACG∽△BCE,
    ∴∠AGC=∠BEC=135°,
    ∴∠AGH=∠CAH=45°,
    ∵∠CHA=∠AHG,
    ∴△AHG∽△CHA,
    ∴,
    设BC=CD=AD=a,则AC=a,
    则由得,
    ∴AH=a,
    则DH=AD﹣AH=a,CH==a,
    ∴由得,
    解得:a=3,即BC=3,
    故答案为3.
    【点睛】
    本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.
    27、 (1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.
    【解析】
    (1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
    (2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
    【详解】
    (1)过点C作AB的垂线CD,垂足为D,
    ∵AB⊥CD,sin30°=,BC=80千米,
    ∴CD=BC•sin30°=80×=40(千米),
    AC=(千米),
    AC+BC=80+(千米),
    答:开通隧道前,汽车从A地到B地要走(80+)千米;
    (2)∵cos30°=,BC=80(千米),
    ∴BD=BC•cos30°=80×(千米),
    ∵tan45°=,CD=40(千米),
    ∴AD=(千米),
    ∴AB=AD+BD=40+(千米),
    ∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).
    答:汽车从A地到B地比原来少走的路程为 [40+40]千米.

    【点睛】
    本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.

    相关试卷

    安徽省利辛县2021-2022学年中考四模数学试题含解析: 这是一份安徽省利辛县2021-2022学年中考四模数学试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,计算的结果等于,-3的相反数是等内容,欢迎下载使用。

    安徽省六安皋城中学2021-2022学年中考数学五模试卷含解析: 这是一份安徽省六安皋城中学2021-2022学年中考数学五模试卷含解析,共21页。试卷主要包含了下列运算正确的是,估计的值在等内容,欢迎下载使用。

    安徽省桐城市重点中学2021-2022学年中考数学模试卷含解析: 这是一份安徽省桐城市重点中学2021-2022学年中考数学模试卷含解析,共17页。试卷主要包含了运用图形变化的方法研究下列问题,方程的解是.等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map