|试卷下载
搜索
    上传资料 赚现金
    安徽省宣城市名校2021-2022学年中考数学模试卷含解析
    立即下载
    加入资料篮
    安徽省宣城市名校2021-2022学年中考数学模试卷含解析01
    安徽省宣城市名校2021-2022学年中考数学模试卷含解析02
    安徽省宣城市名校2021-2022学年中考数学模试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省宣城市名校2021-2022学年中考数学模试卷含解析

    展开
    这是一份安徽省宣城市名校2021-2022学年中考数学模试卷含解析,共20页。试卷主要包含了1﹣的相反数是,下列各式计算正确的是,下列运算结果为正数的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    2.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是(  )
    A.36° B.54° C.72° D.108°
    3.1﹣的相反数是(  )
    A.1﹣ B.﹣1 C. D.﹣1
    4.下列各式计算正确的是( )
    A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b2
    5.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
    A. B.
    C. D.
    6.下列运算结果为正数的是( )
    A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)
    7.如图所示的图形为四位同学画的数轴,其中正确的是( )
    A. B.
    C. D.
    8.如图所示,在平面直角坐标系中,抛物线y=-x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为( ).

    A.3 B. C. D.
    9.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是(  )

    A.70° B.44° C.34° D.24°
    10.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( )
    A.-1 B.- C. D.–π
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.将绕点逆时针旋转到使、、在同一直线上,若,,,则图中阴影部分面积为________.

    12.如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y= (x>0)的图象过点B,C,若△OAB的面积为5,则△ABC的面积是________.

    13.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.
    14.对于函数,我们定义(m、n为常数).
    例如,则.
    已知:.若方程有两个相等实数根,则m的值为__________.
    15.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为________.
    16.方程的根是________.
    三、解答题(共8题,共72分)
    17.(8分)计算:.
    18.(8分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值.

    19.(8分)如图,抛物线y=ax2+bx﹣2经过点A(4,0),B(1,0).

    (1)求出抛物线的解析式;
    (2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;
    (3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
    20.(8分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP交直线BP于E.
    (1) 若,求证:;
    (2) 若AB=BC.
    ① 如图2,当点P与E重合时,求的值;
    ② 如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.

    21.(8分)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高14米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:1.
    求:(1)背水坡AB的长度.
    (1)坝底BC的长度.

    22.(10分)计算下列各题:
    (1)tan45°−sin60°•cos30°;
    (2)sin230°+sin45°•tan30°.
    23.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?
    24.已知抛物线,与轴交于两点,与轴交于点,且抛物线的对称轴为直线.
    (1)抛物线的表达式;
    (2)若抛物线与抛物线关于直线对称,抛物线与轴交于点两点(点在点左侧),要使,求所有满足条件的抛物线的表达式.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.
    【详解】
    ∵点A(a,-b)在第一象限内,
    ∴a>0,-b>0,
    ∴b<0,
    ∴点B((a,b)在第四象限,
    故选D.
    【点睛】
    本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
    2、C
    【解析】
    正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是=72度,
    故选C.
    3、B
    【解析】
    根据相反数的的定义解答即可.
    【详解】
    根据a的相反数为-a即可得,1﹣的相反数是﹣1.
    故选B.
    【点睛】
    本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.
    4、C
    【解析】
    根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.
    【详解】
    A. a+3a=4a,故不正确;
    B. (–a2)3=(-a)6 ,故不正确;
    C. a3·a4=a7 ,故正确;
    D. (a+b)2=a2+2ab+b2,故不正确;
    故选C.
    【点睛】
    本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.
    5、A
    【解析】
    若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
    解:设走路线一时的平均速度为x千米/小时,

    故选A.
    6、B
    【解析】
    分别根据有理数的加、减、乘、除运算法则计算可得.
    【详解】
    解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;
    B、1﹣(﹣2)=1+2=3,结果为正数;
    C、1×(﹣2)=﹣1×2=﹣2,结果为负数;
    D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;
    故选B.
    【点睛】
    本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.
    7、D
    【解析】
    根据数轴三要素:原点、正方向、单位长度进行判断.
    【详解】
    A选项图中无原点,故错误;
    B选项图中单位长度不统一,故错误;
    C选项图中无正方向,故错误;
    D选项图形包含数轴三要素,故正确;
    故选D.
    【点睛】
    本题考查数轴的画法,熟记数轴三要素是解题的关键.
    8、A
    【解析】
    连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH= AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.

    【详解】
    连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH= AP,因为AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.
    故选A.
    【点睛】
    本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.
    9、C
    【解析】
    易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC
    【详解】
    ∵AB=BD,∠B=40°,
    ∴∠ADB=70°,
    ∵∠C=36°,
    ∴∠DAC=∠ADB﹣∠C=34°.
    故选C.
    【点睛】
    本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.
    10、B
    【解析】
    根据两个负数,绝对值大的反而小比较.
    【详解】
    解:∵− >−1>− >−π,
    ∴负数中最大的是−.
    故选:B.
    【点睛】
    本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析:易得整理后阴影部分面积为圆心角为110°,两个半径分别为4和1的圆环的面积.
    详解:由旋转可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,
    ∴BC=1cm,AC=1cm,∠A′BA=110°,∠CBC′=110°,
    ∴阴影部分面积=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=×(41-11)=4πcm1.
    故答案为4π.
    点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解.
    12、
    【解析】
    如图,过C作CD⊥y轴于D,交AB于E.设AB=2a,则BE=AE=CE=a,再设A(x,x),则B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函数的图象上可得x(x+2a)=(x+a)(x+a),解得x=3a,由△OAB的面积为5求得ax=5,即可得a2=,根据S△ABC=AB•CE即可求解.
    【详解】
    如图,过C作CD⊥y轴于D,交AB于E.

    ∵AB⊥x轴,
    ∴CD⊥AB,
    ∵△ABC是等腰直角三角形,
    ∴BE=AE=CE,
    设AB=2a,则BE=AE=CE=a,
    设A(x,x),则B(x,x+2a),C(x+a,x+a),
    ∵B、C在反比例函数的图象上,
    ∴x(x+2a)=(x+a)(x+a),
    解得x=3a,
    ∵S△OAB=AB•DE=•2a•x=5,
    ∴ax=5,
    ∴3a2=5,
    ∴a2=,
    ∴S△ABC=AB•CE=•2a•a=a2=.
    故答案为:.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.
    13、1
    【解析】
    观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.
    【详解】
    由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,
    个位数字1,3,1,5循环出现,四个一组,
    2019÷4=504…3,
    ∴22019﹣1的个位数是1.
    故答案为1.
    【点睛】
    本题考查数的循环规律,确定循环规律,找准余数是解题的关键.
    14、
    【解析】
    分析:根据题目中所给定义先求,再利用根与系数关系求m值.
    详解:由所给定义知,,若
    =0,
    解得m=.
    点睛:一元二次方程的根的判别式是,
    △=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.
    △>0说明方程有两个不同实数解,
    △=0说明方程有两个相等实数解,
    △<0说明方程无实数解.
    实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.
    15、y2<y1<y2
    【解析】
    分析:设t=k2﹣2k+2,配方后可得出t>1,利用反比例函数图象上点的坐标特征可求出y1、y2、y2的值,比较后即可得出结论.
    详解:设t=k2﹣2k+2,
    ∵k2﹣2k+2=(k﹣1)2+2>1,
    ∴t>1.
    ∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函数y=(k为常数)的图象上,
    ∴y1=﹣,y2=﹣t,y2=t,
    又∵﹣t<﹣<t,
    ∴y2<y1<y2.
    故答案为:y2<y1<y2.
    点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y2的值是解题的关键.
    16、x=2
    【解析】
    分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解.
    详解:据题意得:2+2x=x2,
    ∴x2﹣2x﹣2=0,
    ∴(x﹣2)(x+1)=0,
    ∴x1=2,x2=﹣1.
    ∵≥0,
    ∴x=2.
    故答案为:2.
    点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验.

    三、解答题(共8题,共72分)
    17、.
    【解析】
    利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.
    【详解】
    解:原式=
    = .
    故答案为 .
    【点睛】
    本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.
    18、.
    【解析】
    由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值.
    【详解】
    解:∵,的长分别是关于的方程的两根,
    设方程的两根为和,可令,,
    ∵四边形是菱形,
    ∴,
    在中:由勾股定理得:,
    ∴,则,
    由根与系数的关系得:,,
    ∴,
    整理得:,
    解得:,
    又∵,
    ∴,解得,
    ∴.
    【点睛】
    此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.
    19、(1)y=﹣x2+x﹣2;(2)当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).
    【解析】
    (1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.
    【详解】
    (1)∵该抛物线过点A(4,0),B(1,0),
    ∴将A与B代入解析式得:,解得:,
    则此抛物线的解析式为y=﹣x2+x﹣2;
    (2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,
    过D作y轴的平行线交AC于E,

    由题意可求得直线AC的解析式为y=x﹣2,
    ∴E点的坐标为(t,t﹣2),
    ∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,
    ∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,
    则当t=2时,△DAC面积最大为4;
    (3)存在,如图,

    设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,
    当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,
    又∵∠COA=∠PMA=90°,
    ∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),
    解得:m=2或m=4(舍去),
    此时P(2,1);
    ②当==时,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,
    解得:m=4或m=5(均不合题意,舍去)
    ∴当1<m<4时,P(2,1);
    类似地可求出当m>4时,P(5,﹣2);
    当m<1时,P(﹣3,﹣14),
    综上所述,符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).
    【点睛】
    本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论.
    20、(1)证明见解析;(2)①;②3.
    【解析】
    (1) 过点A作AF⊥BP于F,根据等腰三角形的性质得到BF=BP,易证Rt△ABF∽Rt△BCE,根据相似三角形的性质得到,即可证明BP=CE.
    (2) ①延长BP、AD交于点F,过点A作AG⊥BP于G,证明△ABG≌△BCP,根据全等三角形的性质得BG=CP,设BG=1,则PG=PC=1,BC=AB=,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出的值;
    ② 延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB= ,根据勾股定理得到
    ,根据等腰直角三角形的性质得到.
    【详解】
    解:(1) 过点A作AF⊥BP于F
    ∵AB=AP
    ∴BF=BP,
    ∵Rt△ABF∽Rt△BCE

    ∴BP=CE.

    (2) ①延长BP、AD交于点F,过点A作AG⊥BP于G

    ∵AB=BC
    ∴△ABG≌△BCP(AAS)
    ∴BG=CP
    设BG=1,则PG=PC=1
    ∴BC=AB=
    在Rt△ABF中,由射影定理知,AB2=BG·BF=5
    ∴BF=5,PF=5-1-1=3

    ② 延长BF、AD交于点G,过点A作AH⊥BE于H
    ∵AB=BC
    ∴△ABH≌△BCE(AAS)
    设BH=BP=CE=1

    ∴PG=,BG=
    ∵AB2=BH·BG
    ∴AB=

    ∵AF平分∠PAD,AH平分∠BAP
    ∴∠FAH=∠BAD=45°
    ∴△AFH为等腰直角三角形


    【点睛】
    考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.
    21、(1)背水坡的长度为米;(1)坝底的长度为116米.
    【解析】
    (1)分别过点、作,垂足分别为点、,结合题意求得AM,MN,在中,得BM,再利用勾股定理即可.
    (1)在中,求得CN即可得到BC.
    【详解】

    (1)分别过点、作,垂足分别为点、,
    根据题意,可知(米),(米)
    在中∵,∴(米),
    ∵,∴(米).
    答:背水坡的长度为米.
    (1)在中,,
    ∴(米),
    ∴(米)
    答:坝底的长度为116米.
    【点睛】
    本题考查的知识点是解直角三角形的应用-坡度坡角问题,解题的关键是熟练的掌握解直角三角形的应用-坡度坡角问题.
    22、(1);(2).
    【解析】
    (1)原式=1﹣×=1﹣=;
    (2)原式=×+×=.
    【点睛】
    本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.
    23、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.
    【解析】
    (1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    (2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.
    【详解】
    (1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
    依题意,得:,
    解得:.
    答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.
    (2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,
    依题意,得:60m+45(50﹣m)≤2550,
    解得:m≤1.
    答:最多可以购进1筒甲种羽毛球.
    【点睛】
    本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
    24、(1);(2).
    【解析】
    (1)根据待定系数法即可求解;
    (2)根据题意知,根据三角形面积公式列方程即可求解.
    【详解】
    (1)根据题意得:,
    解得:,
    抛物线的表达式为:;
    (2)∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线
    ∴抛物线的对称轴为直线,
    ∵抛物线与轴交于点两点且点在点左侧,
    ∴的横坐标为:
    ∴,
    令,则,
    解得:,
    令,则,
    ∴点的坐标分别为,,点的坐标为,
    ∴,
    ∵,
    ∴,即,
    解得:或,
    ∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线,
    ∴抛物线的表达式为或.
    【点睛】
    本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线的对称轴为直线.

    相关试卷

    安徽省宣城市宣州区狸桥中学2021-2022学年中考数学最后一模试卷含解析: 这是一份安徽省宣城市宣州区狸桥中学2021-2022学年中考数学最后一模试卷含解析,共24页。试卷主要包含了下列运算正确的是,已知,若分式有意义,则的取值范围是等内容,欢迎下载使用。

    2021-2022学年安徽省宣城市第二中学中考数学模试卷含解析: 这是一份2021-2022学年安徽省宣城市第二中学中考数学模试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。

    2021-2022学年安徽省宣城市奋飞校中考数学最后一模试卷含解析: 这是一份2021-2022学年安徽省宣城市奋飞校中考数学最后一模试卷含解析,共19页。试卷主要包含了计算36÷,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map