![安徽省凤阳县市级名校2022年中考数学对点突破模拟试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13447969/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省凤阳县市级名校2022年中考数学对点突破模拟试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13447969/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省凤阳县市级名校2022年中考数学对点突破模拟试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13447969/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
安徽省凤阳县市级名校2022年中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若a与5互为倒数,则a=( )
A. B.5 C.-5 D.
2.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是 ( )
A.1 B.2 C.3 D.4
3.一次函数的图象上有点和点,且,下列叙述正确的是
A.若该函数图象交y轴于正半轴,则
B.该函数图象必经过点
C.无论m为何值,该函数图象一定过第四象限
D.该函数图象向上平移一个单位后,会与x轴正半轴有交点
4.如图⊙O的直径垂直于弦,垂足是,,,的长为( )
A. B.4 C. D.8
5.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是( )
A.5 B.9 C.15 D.22
6.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为 ( )
A.2 B.2 C.4 D.3
7.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是( )
A.相交 B.相切 C.相离 D.无法确定
8.下列各运算中,计算正确的是( )
A.a12÷a3=a4 B.(3a2)3=9a6
C.(a﹣b)2=a2﹣ab+b2 D.2a•3a=6a2
9.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )
A.1 B.2 C.3 D.4
10.对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是( )
A.40 B.45 C.51 D.56
二、填空题(共7小题,每小题3分,满分21分)
11.分解因式:__________.
12.若关于的一元二次方程无实数根,则一次函数的图象不经过第_________象限.
13.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.
14.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为________.
15.如图,在 Rt△ABC 中,∠C=90°,AM 是 BC 边上的中线,cos∠AMC ,则 tan∠B 的值为__________.
16.矩形ABCD中,AB=8,AD=6,E为BC边上一点,将△ABE沿着AE翻折,点B落在点F处,当△EFC为直角三角形时BE=_____.
17.如图,在扇形OAB中,∠O=60°,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,,OB上,则图中阴影部分的面积为__________.
三、解答题(共7小题,满分69分)
18.(10分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.
(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;
(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.
19.(5分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)
20.(8分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.
21.(10分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.
(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;
(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);
(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.
22.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:
x/元
…
15
20
25
…
y/件
…
25
20
15
…
已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?
23.(12分)如图,在平面直角坐标系xOy中,函数的图象与直线y=2x+1交于点A(1,m).
(1)求k、m的值;
(2)已知点P(n,0)(n≥1),过点P作平行于y轴的直线,交直线y=2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.
①当n=3时,求线段AB上的整点个数;
②若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.
24.(14分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.
(1)求两批次购蔬菜各购进多少吨?
(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.
详解:根据题意可得:5a=1,解得:a=, 故选A.
点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.
2、C
【解析】
分析:
过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.
详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;
(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;
(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;
综上所述,符合要求的半径为2的圆共有3个.
故选C.
点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.
3、B
【解析】
利用一次函数的性质逐一进行判断后即可得到正确的结论.
【详解】
解:一次函数的图象与y轴的交点在y轴的正半轴上,则,,若,则,故A错误;
把代入得,,则该函数图象必经过点,故B正确;
当时,,,函数图象过一二三象限,不过第四象限,故C错误;
函数图象向上平移一个单位后,函数变为,所以当时,,故函数图象向上平移一个单位后,会与x轴负半轴有交点,故D错误,
故选B.
【点睛】
本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.
4、C
【解析】
∵直径AB垂直于弦CD,
∴CE=DE=CD,
∵∠A=22.5°,
∴∠BOC=45°,
∴OE=CE,
设OE=CE=x,
∵OC=4,
∴x2+x2=16,
解得:x=2,
即:CE=2,
∴CD=4,
故选C.
5、B
【解析】
条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
【详解】
课外书总人数:6÷25%=24(人),
看5册的人数:24﹣5﹣6﹣4=9(人),
故选B.
【点睛】
本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
6、A
【解析】
连接CC′,
∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,
∴∠ADC′=∠ADC=30°,CD=C′D,
∴∠CDC′=∠ADC+∠ADC′=60°,
∴△DCC′是等边三角形,
∴∠DC′C=60°,
∵在△ABC中,AD是BC边的中线,
即BD=CD,
∴C′D=BD,
∴∠DBC′=∠DC′B=∠CDC′=30°,
∴∠BC′C=∠DC′B+∠DC′C=90°,
∵BC=4,
∴BC′=BC•cos∠DBC′=4×=2,
故选A.
【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.
7、C
【解析】
首先求出方程的根,再利用半径长度,由点O到直线a的距离为d,若d
【详解】
∵x2-4x-12=0,
(x+2)(x-6)=0,
解得:x1=-2(不合题意舍去),x2=6,
∵点O到直线l距离是方程x2-4x-12=0的一个根,即为6,
∴点O到直线l的距离d=6,r=5,
∴d>r,
∴直线l与圆相离.
故选:C
【点睛】
本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.
8、D
【解析】
【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.
【详解】A、原式=a9,故A选项错误,不符合题意;
B、原式=27a6,故B选项错误,不符合题意;
C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;
D、原式=6a2,故D选项正确,符合题意,
故选D.
【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.
9、C
【解析】
本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.
【详解】
由题意得:E、M、D位于反比例函数图象上,
则,
过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.
又∵M为矩形ABCO对角线的交点,
∴S矩形ABCO=4S□ONMG=4|k|,
∵函数图象在第一象限,k>0,
∴.
解得:k=1.
故选C.
【点睛】
本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.
10、C
【解析】
解:根据定义,得
∴
解得:.
故选C.
二、填空题(共7小题,每小题3分,满分21分)
11、3(m-1)2
【解析】
试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.
故答案为:3(m-1)2
点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).
12、一
【解析】
根据一元二次方程的定义和判别式的意义得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根据一次函数的性质判断一次函数y=mx+m的图象所在的象限即可.
【详解】
∵关于x的一元二次方程mx2-2x-1=0无实数根,
∴m≠0且△=(-2)2-4m×(-1)<0,
∴m<-1,
∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.
故答案为一.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.
13、40
【解析】
如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,
故答案为:40.
14、
【解析】
解:设E(x,x),
∴B(2,x+2),
∵反比例函数 (k≠0,x>0)的图象过点B. E.
∴x2=2(x+2),
,(舍去),
,
故答案为
15、
【解析】
根据cos∠AMC ,设, ,由勾股定理求出AC的长度,根据中线表达出BC即可求解.
【详解】
解:∵cos∠AMC ,
,
设, ,
∴在Rt△ACM中,
∵AM 是 BC 边上的中线,
∴BM=MC=3x,
∴BC=6x,
∴在Rt△ABC中,,
故答案为:.
【点睛】
本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.
16、3或1
【解析】
分当点F落在矩形内部时和当点F落在AD边上时两种情况求BE得长即可.
【详解】
当△CEF为直角三角形时,有两种情况:
当点F落在矩形内部时,如图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=8,
∴AC= =10,
∵∠B沿AE折叠,使点B落在点F处,
∴∠AFE=∠B=90°,
当△CEF为直角三角形时,只能得到∠EFC=90°,
∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,
∴EB=EF,AB=AF=1,
∴CF=10﹣1=4,
设BE=x,则EF=x,CE=8﹣x,
在Rt△CEF中,
∵EF2+CF2=CE2,
∴x2+42=(8﹣x)2,
解得x=3,
∴BE=3;
②当点F落在AD边上时,如图2所示.
此时ABEF为正方形,
∴BE=AB=1.
综上所述,BE的长为3或1.
故答案为3或1.
【点睛】
本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论.
17、8π﹣8
【解析】
连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可.
【详解】
连接EF、OC交于点H,
则OH=2,
∴FH=OH×tan30°=2,
∴菱形FOEC的面积=×4×4=8,
扇形OAB的面积==8π,
则阴影部分的面积为8π﹣8,
故答案为8π﹣8.
【点睛】
本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.
三、解答题(共7小题,满分69分)
18、(1) (2)证明见解析
【解析】
(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.
【详解】
解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.
在 Rt△ABE 中,∵OB=OE,
∴BE=2OA=2,
∵MB=ME,
∴∠MBE=∠MEB=15°,
∴∠AME=∠MBE+∠MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,
∵AB2+AE2=BE2,
∴,
∴x= (负根已经舍弃),
∴AB=AC=(2+ )• ,
∴BC= AB= +1.
作 CQ⊥AC,交 AF 的延长线于 Q,
∵ AD=AE ,AB=AC ,∠BAE=∠CAD,
∴△ABE≌△ACD(SAS),
∴∠ABE=∠ACD,
∵∠BAC=90°,FG⊥CD,
∴∠AEB=∠CMF,
∴∠GEM=∠GME,
∴EG=MG,
∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,
∴△ABE≌△CAQ(ASA),
∴BE=AQ,∠AEB=∠Q,
∴∠CMF=∠Q,
∵∠MCF=∠QCF=45°,CF=CF,
∴△CMF≌△CQF(AAS),
∴FM=FQ,
∴BE=AQ=AF+FQ=AF=FM,
∵EG=MG,
∴BG=BE+EG=AF+FM+MG=AF+FG.
【点睛】
本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
19、小亮说的对,CE为2.6m.
【解析】
先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.
【详解】
解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,
∵tan∠BAD=,
∴BD=10×tan18°,
∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),
在△ABD中,∠CDE=90°﹣∠BAD=72°,
∵CE⊥ED,
∴sin∠CDE=,
∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),
∵2.6m<2.7m,且CE⊥AE,
∴小亮说的对.
答:小亮说的对,CE为2.6m.
【点睛】
本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.
20、不公平
【解析】
【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.
【详解】根据题意列表如下:
1
2
3
1
1
(1,1)
(2,1)
(3,1)
(1,1)
2
(1,2)
(2,2)
(3,2)
(1,2)
3
(1,3)
(2,3)
(3,3)
(1,3)
1
(1,1)
(2,1)
(3,1)
(1,1)
所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,
∴P(甲获胜)=,P(乙获胜)=1﹣=,
则该游戏不公平.
【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.
21、(1) ;(2)5π;(3)PB的值为或.
【解析】
(1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;
(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;
(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.
【详解】
解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.
∴∠DNM=∠AMN=90°,
∵AD∥BC,
∴∠DAM=∠AMN=∠DNM=90°,
∴四边形AMND是矩形,
∴AM=DN,
∵AB=CD=13,
∴Rt△ABM≌Rt△DCN,
∴BM=CN,
∵AD=11,BC=21,
∴BM=CN=5,
∴AM==12,
在Rt△ABM中,sinB==.
(2)如图2中,连接AC.
在Rt△ACM中,AC===20,
∵PB=PA,BE=EC,
∴PE=AC=10,
∴的长==5π.
(3)如图3中,当点Q落在直线AB上时,
∵△EPB∽△AMB,
∴==,
∴==,
∴PB=.
如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.
设PB=x,则AP=13﹣x.
∵AD∥BC,
∴∠B=∠HAP,
∴PG=x,PH=(13﹣x),
∴BG=x,
∵△PGE≌△QHP,
∴EG=PH,
∴﹣x=(13﹣x),
∴BP=.
综上所述,满足条件的PB的值为或.
【点睛】
本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.
22、();()此时每天利润为元.
【解析】
试题分析:(1) 根据题意用待定系数法即可得解;
(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.
试题解析:()设,将,和,代入,得:,解得:,
∴;
()将代入()中函数表达式得:
,
∴利润(元),
答:此时每天利润为元.
23、(1)m=3,k=3;(2)①线段AB上有(1,3)、(2,5)、(3,7)共3个整点,②当2≤n<3时,有五个整点.
【解析】
(1)将A点代入直线解析式可求m,再代入,可求k.
(2)①根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1≤x≤3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.
②根据图象可以直接判断2≤n<3.
【详解】
(1)∵点A(1,m)在y=2x+1上,
∴m=2×1+1=3.
∴A(1,3).
∵点A(1,3)在函数的图象上,
∴k=3.
(2)①当n=3时,B、C两点的坐标为B(3,7)、C(3,1).
∵整点在线段AB上
∴1≤x≤3且x为整数
∴x=1,2,3
∴当x=1时,y=3,
当x=2时,y=5,
当x=3时,y=7,
∴线段AB上有(1,3)、(2,5)、(3,7)共3个整点.
②由图象可得当2≤n<3时,有五个整点.
【点睛】
本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.
24、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.
【解析】
(1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨.构建方程组即可解决问题.
(2)设精加工x吨,利润为w元,则粗加工(100-x)吨.利润w=800x+400(200﹣x)=400x+80000,再由x≤3(100-x),解得x≤150,即可解决问题.
【详解】
(1)设第一次购进a吨,第二次购进b吨,
,
解得 ,
答:第一次购进40吨,第二次购进160吨;
(2)设精加工x吨,利润为w元,
w=800x+400(200﹣x)=400x+80000,
∵x≤3(200﹣x),
解得,x≤150,
∴当x=150时,w取得最大值,此时w=1,
答:为获得最大利润,精加工数量应为150吨,最大利润是1.
【点睛】
本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.
2022届重庆市江北区市级名校中考数学对点突破模拟试卷含解析: 这是一份2022届重庆市江北区市级名校中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。
2021-2022学年河南省郑州市市级名校中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年河南省郑州市市级名校中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,定义运算等内容,欢迎下载使用。
江苏省高淳区市级名校2022年中考数学对点突破模拟试卷含解析: 这是一份江苏省高淳区市级名校2022年中考数学对点突破模拟试卷含解析,共22页。