安徽省蚌埠实验中学2022年中考数学全真模拟试题含解析
展开
这是一份安徽省蚌埠实验中学2022年中考数学全真模拟试题含解析,共20页。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图所示图形中,不是正方体的展开图的是( )
A. B.
C. D.
2.已知正多边形的一个外角为36°,则该正多边形的边数为( ).
A.12 B.10 C.8 D.6
3.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )
A.8或10 B.8 C.10 D.6或12
4.给出下列各数式,① ② ③ ④ 计算结果为负数的有( )
A.1个 B.2个 C.3个 D.4个
5.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置( )
A.随点C的运动而变化
B.不变
C.在使PA=OA的劣弧上
D.无法确定
6.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )
A. B. C. D.
7.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )
A. B. C. D.
8.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于( )
A.10° B.12.5° C.15° D.20°
9.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )
A.30° B.50° C.60° D.70°
10.点A、C为半径是4的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为( )
A.或2 B.或2 C.2或2 D.2或2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 .
12.若4a+3b=1,则8a+6b-3的值为______.
13.已知△ABC中,∠C=90°,AB=9,,把△ABC 绕着点C旋转,使得点A落在点A′,点B落在点B′.若点A′在边AB上,则点B、B′的距离为_____.
14.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.
15.正多边形的一个外角是,则这个多边形的内角和的度数是___________________.
16.计算:(﹣)﹣2﹣2cos60°=_____.
三、解答题(共8题,共72分)
17.(8分)某经销商从市场得知如下信息:
A品牌手表
B品牌手表
进价(元/块)
700
100
售价(元/块)
900
160
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
18.(8分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.
求证:BG=FG;若AD=DC=2,求AB的长.
19.(8分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:
A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.
以下是根据调查结果绘制的统计图表的一部分,
运动形式
A
B
C
D
E
人数
请你根据以上信息,回答下列问题:
接受问卷调查的共有 人,图表中的 , .
统计图中,类所对应的扇形的圆心角的度数是 度.
揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.
20.(8分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)
21.(8分)化简,再求值:
22.(10分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
学生体能测试成绩各等次人数统计表
体能等级
调整前人数
调整后人数
优秀
8
良好
16
及格
12
不及格
4
合计
40
(1)填写统计表;
(2)根据调整后数据,补全条形统计图;
(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.
23.(12分)如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.
(1)求证:AO=EO;
(2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.
24.在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1.
(1)求抛物线的表达式;
(2)求∠CAB的正切值;
(3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.
【详解】
解:A、B、D都是正方体的展开图,故选项错误;
C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.
故选C.
【点睛】
此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题
2、B
【解析】
利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.
【详解】
解:360°÷36°=10,所以这个正多边形是正十边形.
故选:B.
【点睛】
本题主要考查了多边形的外角和定理.是需要识记的内容.
3、C
【解析】
试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,
②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,
综上所述,它的周长是4.故选C.
考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.
4、B
【解析】
∵①;②;③;④;
∴上述各式中计算结果为负数的有2个.
故选B.
5、B
【解析】
因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.
【详解】
解:连接OP,
∵CP是∠OCD的平分线,
∴∠DCP=∠OCP,
又∵OC=OP,
∴∠OCP=∠OPC,
∴∠DCP=∠OPC,
∴CD∥OP,
又∵CD⊥AB,
∴OP⊥AB,
∴,
∴PA=PB.
∴点P是线段AB垂直平分线和圆的交点,
∴当C在⊙O上运动时,点P不动.
故选:B.
【点睛】
本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.
6、D
【解析】
甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.
【详解】
解:由于函数的图像经过点,则有
∴图象过第二、四象限,
∵k=-1,
∴一次函数y=x-1,
∴图象经过第一、三、四象限,
故选:D.
【点睛】
本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;
7、B
【解析】
解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.
8、C
【解析】
试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.
∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,
∴∠DAC=∠BAD=30°,
∵AD=AE(已知),
∴∠ADE=75°
∴∠EDC=90°-∠ADE=15°.
故选C.
考点:本题主要考查了等腰三角形的性质,三角形内角和定理
点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
9、C
【解析】
试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,
∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.
故选C.
考点:圆周角定理
10、C
【解析】
过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.
【详解】
过B作直径,连接AC交AO于E,
∵点B为的中点,
∴BD⊥AC,
如图①,
∵点D恰在该圆直径上,D为OB的中点,
∴BD=×4=2,
∴OD=OB-BD=2,
∵四边形ABCD是菱形,
∴DE=BD=1,
∴OE=1+2=3,
连接OC,
∵CE=,
在Rt△DEC中,由勾股定理得:DC=;
如图②,
OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,
由勾股定理得:CE=,
DC=.
故选C.
【点睛】
本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、0或1
【解析】
分析:需要分类讨论:
①若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;
②若m≠0,则函数y=mx2+2x+1是二次函数,
根据题意得:△=4﹣4m=0,解得:m=1。
∴当m=0或m=1时,函数y=mx2+2x+1的图象与x轴只有一个公共点。
12、-1
【解析】
先求出8a+6b的值,然后整体代入进行计算即可得解.
【详解】
∵4a+3b=1,
∴8a+6b=2,
8a+6b-3=2-3=-1;
故答案为:-1.
【点睛】
本题考查了代数式求值,整体思想的利用是解题的关键.
13、4
【解析】
过点C作CH⊥AB于H,利用解直角三角形的知识,分别求出AH、AC、BC的值,进而利用三线合一的性质得出AA'的值,然后利用旋转的性质可判定△ACA'∽△BCB',继而利用相似三角形的对应边成比例的性质可得出BB'的值.
【详解】
解:过点C作CH⊥AB于H,
∵在Rt△ABC中,∠C=90,cosA= ,
∴AC=AB•cosA=6,BC=3 ,
在Rt△ACH中,AC=6,cosA=,
∴AH=AC•cosA=4,
由旋转的性质得,AC=A'C,BC=B'C,
∴△ACA'是等腰三角形,因此H也是AA'中点,
∴AA'=2AH=8,
又∵△BCB'和△ACA'都为等腰三角形,且顶角∠ACA'和∠BCB'都是旋转角,
∴∠ACA'=∠BCB',
∴△ACA'∽△BCB',
∴即 ,
解得:BB'=4.
故答案为:4.
【点睛】
此题考查了解直角三角形、旋转的性质、勾股定理、等腰三角形的性质、相似三角形的判定与性质,解答本题的关键是得出△ACA'∽△BCB'.
14、1
【解析】
由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=1,继而可得结论.
【详解】
∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC.
∵AB=4,BC=6,∴AD+CD=1.
∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.
故答案为1.
【点睛】
本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
15、540°
【解析】
根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.
考点:多边形的内角和与外角和
16、3
【解析】
按顺序先进行负指数幂的运算、代入特殊角的三角函数值,然后再进行减法运算即可.
【详解】
(﹣)﹣2﹣2cos60°
=4-2×
=3,
故答案为3.
【点睛】
本题考查了实数的运算,涉及了负指数幂、特殊角的三角函数值,熟练掌握相关的运算法则是解题的关键.
三、解答题(共8题,共72分)
17、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
【解析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
【详解】
解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
由700x+100(100﹣x)≤40000得x≤50.
∴y与x之间的函数关系式为y=140x+6000(x≤50)
(2)令y≥12600,即140x+6000≥12600,
解得x≥47.1.
又∵x≤50,∴经销商有以下三种进货方案:
方案
A品牌(块)
B品牌(块)
①
48
52
②
49
51
③
50
50
(3)∵140>0,∴y随x的增大而增大.
∴x=50时y取得最大值.
又∵140×50+6000=13000,
∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
【点睛】
本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
18、(1)证明见解析;(2)AB=
【解析】
(1)证明:∵,DE⊥AC于点F,
∴∠ABC=∠AFE.
∵AC=AE,∠EAF=∠CAB,
∴△ABC≌△AFE
∴AB=AF.
连接AG,
∵AG=AG,AB=AF
∴Rt△ABG≌Rt△AFG
∴BG=FG
(2)解:∵AD=DC,DF⊥AC
∴
∴∠E=30°
∴∠FAD=∠E=30°
∴AB=AF=
19、(1)150、45、36;(2)28.8°;(3)450人
【解析】
(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;
(2)360°乘以A项目人数占总人数的比例可得;
(3)利用总人数乘以样本中C人数所占比例可得.
【详解】
解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,
∴n=36,
故答案为:150、45、36;
(2)A类所对应的扇形圆心角的度数为
故答案为:28.8°;
(3)(人)
答:估计该社区参加碧沙岗“暴走团”的大约有450人
【点睛】
本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
20、
【解析】
过点A作,垂足为G,利用三角函数求出CG,从而求出GD,继而求出CD.连接FD并延长与BA的延长线交于点H,利用三角函数求出CH,由图得出EH,再利用三角函数值求出EF.
【详解】
过点A作,垂足为G.则,在中,
,
由题意,得,
∴,
连接FD并延长与BA的延长线交于点H. 由题意,得.在中,
,
∴.
在中,.
答:支角钢CD的长为45cm,EF的长为.
考点:三角函数的应用
21、
【解析】
试题分析:把分式化简,然后把x的值代入化简后的式子求值就可以了.
试题解析:原式=
=
当时,原式=.
考点:1.二次根式的化简求值;2.分式的化简求值.
22、(1)12;22;12;4;50;(2)详见解析;(3)1.
【解析】
(1)求出各自的人数,补全表格即可;
(2)根据调整后的数据,补全条形统计图即可;
(3)根据“游戏”人数占的百分比,乘以1500即可得到结果.
【详解】
解:(1)填表如下:
体能等级
调整前人数
调整后人数
优秀
8
12
良好
16
22
及格
12
12
不及格
4
4
合计
40
50
故答案为12;22;12;4;50;
(2)补全条形统计图,如图所示:
(3)抽取的学生中体能测试的优秀率为24%,
则该校体能测试为“优秀”的人数为1500×24%=1(人).
【点睛】
本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.
23、(1)详见解析;(2)平行四边形.
【解析】
(1)由“三线合一”定理即可得到结论;
(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根据垂直平分线的性质有AB=BE,于是AD=BE,进而得到AD=EC,根据平行四边形的判定即可得到结论.
【详解】
证明:(1)∵BD平分∠ABC,AE⊥BD,
∴AO=EO;
(2)平行四边形,
证明:∵AD∥BC,
∴∠ADB=∠ABD,
∴AD=AB,
∵OA=OE,OB⊥AE,
∴AB=BE,
∴AD=BE,
∵BE=CE,
∴AD=EC,
∴四边形AECD是平行四边形.
【点睛】
考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
24、(4)y=﹣x4﹣4x+3;(4);(3)点P的坐标是(4,0)
【解析】
(4) 先求得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为y=a(x+4)4+4,将点 (-3, 0) 代入求得a的值即可;
(4) 先求得A、 B、 C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;
(3) 连接BC,可证得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入个数据可得OP的值,可得P点坐标.
【详解】
解:(4)由题意得,抛物线y=ax4+4ax+c的对称轴是直线,
∵a<0,抛物线开口向下,又与x轴有交点,
∴抛物线的顶点C在x轴的上方,
由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(﹣4,4).
可设此抛物线的表达式是y=a(x+4)4+4,
由于此抛物线与x轴的交点A的坐标是(﹣3,0),可得a=﹣4.
因此,抛物线的表达式是y=﹣x4﹣4x+3.
(4)如图4,
点B的坐标是(0,3).连接BC.
∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,
得AB4+BC4=AC4.
∴△ABC为直角三角形,∠ABC=90°,
所以tan∠CAB=.
即∠CAB的正切值等于.
(3)如图4,连接BC,
∵OA=OB=3,∠AOB=90°,
∴△AOB是等腰直角三角形,
∴∠BAP=∠ABO=45°,
∵∠CAO=∠ABP,
∴∠CAB=∠OBP,
∵∠ABC=∠BOP=90°,
∴△ACB∽△BPO,
∴,
∴,OP=4,
∴点P的坐标是(4,0).
【点睛】
本题主要考查二次函数的图像与性质,综合性大.
相关试卷
这是一份安徽省合肥中学科大附中2022年中考数学全真模拟试题含解析,共26页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份安徽省蚌埠市淮上区重点达标名校2022年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,4的平方根是等内容,欢迎下载使用。
这是一份2021-2022学年安徽省蚌埠局属重点达标名校中考数学全真模拟试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,下列实数为无理数的是,下列分式中,最简分式是等内容,欢迎下载使用。