2022年陕西省西安市雁塔区陕西师大附中中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知方程组,那么x+y的值( )
A.-1 B.1 C.0 D.5
2.下列各式中,互为相反数的是( )
A.和 B.和 C.和 D.和
3.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )
A.30° B.36° C.54° D.72°
4.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:
①△AED≌△DFB;②S四边形 BCDG=CG2;③若AF=2DF,则BG=6GF
,其中正确的结论
A.只有①②. B.只有①③. C.只有②③. D.①②③.
5.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中的值是( ).
A. B. C. D.
6.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为( )
A.50° B.40° C.30° D.25°
7.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )
A. B. C. D.
8.下列计算正确的是()
A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x
9.工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为( )cm.
A. B. C. D.
10.已知正比例函数的图象经过点,则此正比例函数的关系式为( ).
A. B. C. D.
11.下列运算正确的是( )
A.=x5 B. C.·= D.3+2
12.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为( )
A.140° B.160° C.170° D.150°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.使得关于x的分式方程的解为负整数,且使得关于x的不等式组有且仅有5个整数解的所有k的和为_____.
14.化简:+3=_____.
15.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(1)AB的长等于____;
(2)在△ABC的内部有一点P,满足S△PABS△PBCS△PCA =1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______
16.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=_______°.
17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.
18.函数y=中,自变量x的取值范围是_________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知△ABC 中,AD 是∠BAC 的平分线,且 AD=AB,过点 C 作 AD 的垂线,交 AD 的延长线于点 H.
(1)如图 1,若∠BAC=60°.
①直接写出∠B 和∠ACB 的度数;
②若 AB=2,求 AC 和 AH 的长;
(2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明.
20.(6分) 截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元
(1)求A、B型商品的进价;
(2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?
(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案.
21.(6分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=.
(1)求∠C的度数;
(2)求证:BC是⊙O的切线.
22.(8分)先化简,再求值:,其中,.
23.(8分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.
24.(10分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.
25.(10分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
26.(12分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)
27.(12分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图
(1)D组的人数是 人,补全频数分布直方图,扇形图中m= ;
(2)本次调查数据中的中位数落在 组;
(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
解:,
①+②得:3(x+y)=15,
则x+y=5,
故选D
2、A
【解析】
根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.
【详解】
解:A. =9,=-9,故和互为相反数,故正确;
B. =9,=9,故和不是互为相反数,故错误;
C. =-8,=-8,故和不是互为相反数,故错误;
D. =8,=8故和不是互为相反数,故错误.
故选A.
【点睛】
本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.
3、B
【解析】
在等腰三角形△ABE中,求出∠A的度数即可解决问题.
【详解】
解:在正五边形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故选B.
【点睛】
本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
4、D
【解析】
解:①∵ABCD为菱形,∴AB=AD.
∵AB=BD,∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
即∠BGD+∠BCD=180°,
∴点B、C、D、G四点共圆,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
∴∠BGC=∠DGC=60°.
过点C作CM⊥GB于M,CN⊥GD于N.
∴CM=CN,
则△CBM≌△CDN,(HL)
∴S四边形BCDG=S四边形CMGN.
S四边形CMGN=1S△CMG,
∵∠CGM=60°,
∴GM=CG,CM=CG,
∴S四边形CMGN=1S△CMG=1××CG×CG=CG1.
③过点F作FP∥AE于P点.
∵AF=1FD,
∴FP:AE=DF:DA=1:3,
∵AE=DF,AB=AD,
∴BE=1AE,
∴FP:BE=1:6=FG:BG,
即 BG=6GF.
故选D.
5、D
【解析】
根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.
【详解】
解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.
【点睛】
本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.
6、A
【解析】
由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.
【详解】
如图,
∵∠1=40°,
∴∠3=∠1=40°,
∴∠2=90°-40°=50°.
故选A.
【点睛】
此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.
7、A
【解析】
转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可
【详解】
奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:
P(奇数)= = .故此题选A.
【点睛】
此题主要考查了几何概率,正确应用概率公式是解题关键.
8、C
【解析】
根据合并同类项法则和去括号法则逐一判断即可得.
【详解】
解:A.2x2-3x2=-x2,故此选项错误;
B.x+x=2x,故此选项错误;
C.-(x-1)=-x+1,故此选项正确;
D.3与x不能合并,此选项错误;
故选C.
【点睛】
本题考查了整式的加减,熟练掌握运算法则是解题的关键.
9、B
【解析】
分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.
详解:由题意可得圆锥的母线长为:24cm,
设圆锥底面圆的半径为:r,则2πr=,
解得:r=10,
故这个圆锥的高为:(cm).
故选B.
点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.
10、A
【解析】
根据待定系数法即可求得.
【详解】
解:∵正比例函数y=kx的图象经过点(1,﹣3),
∴﹣3=k,即k=﹣3,
∴该正比例函数的解析式为:y=﹣3x.
故选A.
【点睛】
此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
11、B
【解析】
根据幂的运算法则及整式的加减运算即可判断.
【详解】
A. =x6,故错误;
B. ,正确;
C. ·=,故错误;
D. 3+2 不能合并,故错误,
故选B.
【点睛】
此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.
12、B
【解析】
试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.
考点:角度的计算
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、12.1
【解析】
依据分式方程=1的解为负整数,即可得到k>,k≠1,再根据不等式组有1个整数解,即可得到0≤k<4,进而得出k的值,从而可得符合题意的所有k的和.
【详解】
解分式方程=1,可得x=1-2k,
∵分式方程=1的解为负整数,
∴1-2k<0,
∴k>,
又∵x≠-1,
∴1-2k≠-1,
∴k≠1,
解不等式组,可得,
∵不等式组有1个整数解,
∴1≤<2,
解得0≤k<4,
∴<k<4且k≠1,
∴k的值为1.1或2或2.1或3或3.1,
∴符合题意的所有k的和为12.1,
故答案为12.1.
【点睛】
本题考查了解一元一次不等式组、分式方程的解,解题时注意分式方程中的解要满足分母不为0的情况.
14、
【解析】
试题分析:先进行二次根式的化简,然后合并,可得原式=2+=3.
15、; 答案见解析.
【解析】
(1)AB==.
故答案为.
(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.
理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,△PAB的面积=平行四边形ABME的面积,△PBC的面积=平行四边形CDNB的面积,△PAC的面积=△PNG的面积=△DGN的面积=平行四边形DEMG的面积,∴S△PAB:S△PBC:S△PCA=1:2:1.
16、15
【解析】
根据圆的基本性质得出四边形OABC为菱形,∠AOB=60°,然后根据同弧所对的圆心角与圆周角之间的关系得出答案.
【详解】
解:∵OABC为平行四边形,OA=OC=OB,
∴四边形OABC为菱形,∠AOB=60°,
∵OD⊥AB,
∴∠BOD=30°,
∴∠BAD=30°÷2=15°.
故答案为:15.
【点睛】
本题主要考查的是圆的基本性质问题,属于基础题型.根据题意得出四边形OABC为菱形是解题的关键.
17、9n+1.
【解析】
∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
∴正方形和等边三角形的和=6+6=12=9+1;
∵第2个图由11个正方形和10个等边三角形组成,
∴正方形和等边三角形的和=11+10=21=9×2+1;
∵第1个图由16个正方形和14个等边三角形组成,
∴正方形和等边三角形的和=16+14=10=9×1+1,
…,
∴第n个图中正方形和等边三角形的个数之和=9n+1.
故答案为9n+1.
18、x≤1且x≠﹣1
【解析】
由二次根式中被开方数为非负数且分母不等于零求解可得结论.
【详解】
根据题意,得:,解得:x≤1且x≠﹣1.
故答案为x≤1且x≠﹣1.
【点睛】
本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(1)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)①45°,②;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC.证明见解析.
【解析】
(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图 1,作高线 DE,在 Rt△ADE 中,由∠DAC=30°,AB=AD=2 可得 DE=1,AE=, 在 Rt△CDE 中,由∠ACD=45°,DE=1,可得 EC=1,AC= +1,同理可得 AH 的长;(2)如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH,易证△ACH≌△AFH,则 AC=AF,HC=HF, 根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.
【详解】
(1)①∵AD 平分∠BAC,∠BAC=60°,
∴∠BAD=∠CAD=30°,
∵AB=AD,
∴∠B==75°,
∴∠ACB=180°﹣60°﹣75°=45°;
②如图 1,过 D 作 DE⊥AC 交 AC 于点 E,
在 Rt△ADE 中,∵∠DAC=30°,AB=AD=2,
∴DE=1,AE=,
在 Rt△CDE 中,∵∠ACD=45°,DE=1,
∴EC=1,
∴AC=+1,
在 Rt△ACH 中,∵∠DAC=30°,
∴CH=AC=
∴AH==;
(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC.
证明:如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH.
易证△ACH≌△AFH,
∴AC=AF,HC=HF,
∴GH∥BC,
∵AB=AD,
∴∠ABD=∠ADB,
∴∠AGH=∠AHG,
∴AG=AH,
∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.
【点睛】
本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.
20、(1)80,100;(2)100件,22000元;(3)答案见解析.
【解析】
(1)先设A型商品的进价为a元/件,求得B型商品的进价为(a+20)元/件,由题意得等式 ,解得a=80,再检验a是否符合条件,得到答案.
(2)先设购机A型商品x件,则由题意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再设获得的利润为w元,由题意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,当x=100时代入w=﹣60x+28000,从而得答案.
(3)设获得的利润为w元,由题意可得w(a﹣60)x+28000,分类讨论:当50<a<60时,当a=60时,当60<a<70时,各个阶段的利润,得出最大值.
【详解】
解:(1)设A型商品的进价为a元/件,则B型商品的进价为(a+20)元/件,
,
解得,a=80,
经检验,a=80是原分式方程的解,
∴a+20=100,
答:A、B型商品的进价分别为80元/件、100元/件;
(2)设购机A型商品x件,
80x+100(200﹣x)≤18000,
解得,x≥100,
设获得的利润为w元,
w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,
∴当x=100时,w取得最大值,此时w=22000,
答:该客商计划最多投入18000元用于购买这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;
(3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,
∵50<a<70,
∴当50<a<60时,a﹣60<0,y随x的增大而减小,则甲100件,乙100件时利润最大;
当a=60时,w=28000,此时甲乙只要是满足条件的整数即可;
当60<a<70时,a﹣60>0,y随x的增大而增大,则甲120件,乙80件时利润最大.
【点睛】
本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大.
21、(1)60°;(2)见解析
【解析】
(1)连接BD,由AD为圆的直径,得到∠ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出∠CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的值,即可确定出∠C的度数;
(2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出∠ABC度数,由∠ABC﹣∠ABO度数确定出∠OBC度数为90,即可得证;
【详解】
(1)如图,连接BD,
∵AD为圆O的直径,
∴∠ABD=90°,
∴BD=AD=3,
∵CD∥AB,∠ABD=90°,
∴∠CDB=∠ABD=90°,
在Rt△CDB中,tanC=,
∴∠C=60°;
(2)连接OB,
∵∠A=30°,OA=OB,
∴∠OBA=∠A=30°,
∵CD∥AB,∠C=60°,
∴∠ABC=180°﹣∠C=120°,
∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,
∴OB⊥BC,
∴BC为圆O的切线.
【点睛】
此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.
22、1
【解析】
分析:先把小括号内的通分,按照分式的减法和分式的除法法则进行化简,再把字母的值代入运算即可.
详解:原式
当x=-1、y=2时,
原式=-(-1)2+2×22
=-1+8
=1.
点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
23、见解析
【解析】
根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.
【详解】
解:∵CE∥DF
∴∠ECA=∠FDB,
在△ECA和△FDB中
∴△ECA≌△FDB,
∴AE=FB.
【点睛】
本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.
24、(1)见解析;(1)70°.
【解析】
(1)根据全等三角形的判定即可判断△AEC≌△BED;
(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.
【详解】
证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∴∠BEO=∠1.
又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.
在△AEC和△BED中,
∴△AEC≌△BED(ASA).
(1)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,
∴∠BDE=∠C=70°.
【点睛】
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
25、(1);(2)①,当m=5时,S取最大值;②满足条件的点F共有四个,坐标分别为,,,,
【解析】
(1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;
(2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
②直接写出满足条件的F点的坐标即可,注意不要漏写.
【详解】
解:(1)将A、C两点坐标代入抛物线,得 ,
解得: ,
∴抛物线的解析式为y=﹣x2+x+8;
(2)①∵OA=8,OC=6,
∴AC= =10,
过点Q作QE⊥BC与E点,则sin∠ACB = = =,
∴ =,
∴QE=(10﹣m),
∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
∴当m=5时,S取最大值;
在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
D的坐标为(3,8),Q(3,4),
当∠FDQ=90°时,F1(,8),
当∠FQD=90°时,则F2(,4),
当∠DFQ=90°时,设F(,n),
则FD2+FQ2=DQ2,
即+(8﹣n)2++(n﹣4)2=16,
解得:n=6± ,
∴F3(,6+),F4(,6﹣),
满足条件的点F共有四个,坐标分别为
F1(,8),F2(,4),F3(,6+),F4(,6﹣).
【点睛】
本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.
26、解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.
【解析】
易得M在AB的垂直平分线上,且到C的距离等于AB的一半.
27、(1)16、84°;(2)C;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)
【解析】
(1)根据百分比=所长人数÷总人数,圆心角=百分比,计算即可;
(2)根据中位数的定义计算即可;
(3)用一半估计总体的思考问题即可;
【详解】
(1)由题意总人数人,
D组人数人;
B组的圆心角为;
(2)根据A组6人,B组14人,C组19人,D组16人,E组5人可知本次调查数据中的中位数落在C组;
(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有人.
【点睛】
本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.
陕西省西安市长安区达标名校2022年中考考前最后一卷数学试卷含解析: 这是一份陕西省西安市长安区达标名校2022年中考考前最后一卷数学试卷含解析,共22页。
陕西省西安市莲湖区重点名校2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份陕西省西安市莲湖区重点名校2021-2022学年中考考前最后一卷数学试卷含解析,共24页。试卷主要包含了若分式有意义,则a的取值范围是,下列计算正确的是等内容,欢迎下载使用。
2022届陕西省西安市雁塔区陕西师大附中十校联考最后数学试题含解析: 这是一份2022届陕西省西安市雁塔区陕西师大附中十校联考最后数学试题含解析,共26页。试卷主要包含了下列因式分解正确的是,下列计算正确的是等内容,欢迎下载使用。