


2022届陕西省西安市雁塔区陕西师大附中十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.不等式3x<2(x+2)的解是( )
A.x>2 B.x<2 C.x>4 D.x<4
2.用加减法解方程组时,如果消去y,最简捷的方法是( )
A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣① D.②×2+①
3.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )
A.O1 B.O2 C.O3 D.O4
4.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )
A. B. C. D.
5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D.
6.如图是一个放置在水平桌面的锥形瓶,它的俯视图是( )
A. B. C. D.
7.下列因式分解正确的是( )
A. B.
C. D.
8.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:
居民(户)
1
2
3
4
月用电量(度/户)
30
42
50
51
那么关于这10户居民月用电量(单位:度),下列说法错误的是( )
A.中位数是50 B.众数是51 C.方差是42 D.极差是21
9.下列计算正确的是( )
A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6
10.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )
A.5元,2元 B.2元,5元
C.4.5元,1.5元 D.5.5元,2.5元
11.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )
A. B. C. D.
12.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )
A.75° B.60° C.55° D.45°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.因式分解:3a2-6a+3=________.
14.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.
15.如图,直线a、b相交于点O,若∠1=30°,则∠2=___
16.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.
17.若将抛物线y=﹣4(x+2)2﹣3图象向左平移5个单位,再向上平移3个单位得到的抛物线的顶点坐标是_____.
18.若点(,1)与(﹣2,b)关于原点对称,则=_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.
(1)如图,点D在线段CB上时,
①求证:△AEF≌△ADC;
②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;
(2)当∠DAB=15°时,求△ADE的面积.
20.(6分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.
(1)求这条抛物线的表达式和顶点P的坐标;
(2)点E在抛物线的对称轴上,且,求点E的坐标;
(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,,求点Q的坐标.
21.(6分)阅读下列材料,解答下列问题:
材料1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式.如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程.
公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:
x2+2ax﹣3a2
=x2+2ax+a2﹣a2﹣3a2
=(x+a)2﹣(2a)2
=(x+3a)(x﹣a)
材料2.因式分解:(x+y)2+2(x+y)+1
解:将“x+y”看成一个整体,令x+y=A,则
原式=A2+2A+1=(A+1)2
再将“A”还原,得:原式=(x+y+1)2.
上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:
(1)根据材料1,把c2﹣6c+8分解因式;
(2)结合材料1和材料2完成下面小题:
①分解因式:(a﹣b)2+2(a﹣b)+1;
②分解因式:(m+n)(m+n﹣4)+3.
22.(8分)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”.
(1)已知点A的坐标为,
①若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;
②点C在直线x=5上,且点C为点A,B的“和谐点”,求直线AC的表达式.
(2)⊙O的半径为r,点为点、的“和谐点”,且DE=2,若使得与⊙O有交点,画出示意图直接写出半径r的取值范围.
23.(8分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.
(1)a= ,b= ;
(2)确定y2与x之间的函数关系式:
(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?
24.(10分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为.
(1)求抛物线C1的表达式;
(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;
(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.
25.(10分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式的解集.
26.(12分)如图,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
27.(12分)如图,AB是半径为2的⊙O的直径,直线l与AB所在直线垂直,垂足为C,OC=3,P是圆上异于A、B的动点,直线AP、BP分别交l于M、N两点.
(1)当∠A=30°时,MN的长是 ;
(2)求证:MC•CN是定值;
(3)MN是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;
(4)以MN为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
不等式先展开再移项即可解答.
【详解】
解:不等式3x<2(x+2),
展开得:3x<2x+4,
移项得:3x-2x<4,
解之得:x<4.
故答案选D.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
2、D
【解析】
试题解析:用加减法解方程组 时,如果消去y,最简捷的方法是②×2+①,
故选D.
3、A
【解析】
试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.
考点:平面直角坐标系.
4、D
【解析】
甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.
【详解】
解:由于函数的图像经过点,则有
∴图象过第二、四象限,
∵k=-1,
∴一次函数y=x-1,
∴图象经过第一、三、四象限,
故选:D.
【点睛】
本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;
5、D
【解析】
从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.
【详解】
∵从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,
∴D是该几何体的主视图.
故选D.
【点睛】
本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
6、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
锥形瓶从上面往下看看到的是两个同心圆.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
7、C
【解析】
依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.
【详解】
解:D选项中,多项式x2-x+2在实数范围内不能因式分解;
选项B,A中的等式不成立;
选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.
故选C.
【点睛】
本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.
8、C
【解析】
试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,
平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,
中位数为50;众数为51,极差为51-30=21,方差为[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.
故选C.
考点:1.方差;2.中位数;3.众数;4.极差.
9、D
【解析】
根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.
【详解】
A、2a2﹣a2=a2,故A错误;
B、(ab)2=a2b2,故B错误;
C、a2与a3不是同类项,不能合并,故C错误;
D、(a2)3=a6,故D正确,
故选D.
【点睛】
本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.
10、A
【解析】
可设1本笔记本的单价为x元,1支笔的单价为y元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.
【详解】
设1本笔记本的单价为x元,1支笔的单价为y元,依题意有:
,解得:.
故1本笔记本的单价为5元,1支笔的单价为2元.
故选A.
【点睛】
本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.
11、D
【解析】
由题意知:△ABC≌△DEC,
∴∠ACB=∠DCE=30°,AC=DC,
∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.
故选D.
【点睛】
本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.
12、B
【解析】
由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.
【详解】
解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,∠BAF=45°,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠BAE=90°+60°=150°,AB=AE,
∴∠ABE=∠AEB=(180°﹣150°)=15°,
∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
故选:B.
【点睛】
本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、3(a-1)2
【解析】
先提公因式,再套用完全平方公式.
【详解】
解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.
【点睛】
考点:提公因式法与公式法的综合运用.
14、2.40,2.1.
【解析】
∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.
∴它们的中位数为2.40,众数为2.1.
故答案为2.40,2.1.
点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.
15、30°
【解析】
因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.
解:∵∠1+∠2=180°,
又∠1=30°,
∴∠2=150°.
16、17
【解析】
先利用完全平方公式展开,然后再求和.
【详解】
根据(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9, x2+y2-2xy=9,所以x2+y2=17.
【点睛】
(1)完全平方公式:.
(2)平方差公式:(a+b)(a-b)=.
(3)常用等价变形:
,
,
.
17、(﹣7,0)
【解析】
直接利用平移规律“左加右减,上加下减”得出平移后的解析式进而得出答案.
【详解】
∵将抛物线y=-4(x+2)2-3图象向左平移5个单位,再向上平移3个单位,
∴平移后的解析式为:y=-4(x+7)2,
故得到的抛物线的顶点坐标是:(-7,0).
故答案为(-7,0).
【点睛】
此题主要考查了二次函数与几何变换,正确掌握平移规律是解题关键.
18、.
【解析】
∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴==.故答案为.
考点:关于原点对称的点的坐标.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)①证明见解析;②25;(2)为或50+1.
【解析】
(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.
【详解】
(1)、①证明:在Rt△ABC中,
∵∠B=30°,AB=10,
∴∠CAB=60°,AC=AB=5,
∵点F是AB的中点,
∴AF=AB=5,
∴AC=AF,
∵△ADE是等边三角形,
∴AD=AE,∠EAD=60°,
∵∠CAB=∠EAD,
即∠CAD+∠DAB=∠FAE+∠DAB,
∴∠CAD=∠FAE,
∴△AEF≌△ADC(SAS);
②∵△AEF≌△ADC,
∴∠AEF=∠C=90°,EF=CD=x,
又∵点F是AB的中点,
∴AE=BE=y,
在Rt△AEF中,勾股定理可得:y2=25+x2,
∴y2﹣x2=25.
(2)①当点在线段CB上时, 由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,
∴AD2=50,△ADE的面积为;
②当点在线段CB的延长线上时, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,
∴在Rt△ACD中,勾股定理可得AD2=200+100,
综上所述,△ADE的面积为或.
【点睛】
此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.
20、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.
【解析】
(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;
(2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;
(3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.
【详解】
解:(1)抛物线解析式为,
即,
,
顶点P的坐标为;
(2)抛物线的对称轴为直线,
设,
,
,解得,
E点坐标为;
(3)直线交x轴于F,作MN⊥直线x=2于H,如图,
,
而,
,
设,则,
在中,,
,
整理得,解得(舍去),,
Q点的坐标为.
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.
21、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).
【解析】
(1)根据材料1,可以对c2-6c+8分解因式;
(2)①根据材料2的整体思想可以对(a-b)2+2(a-b)+1分解因式;
②根据材料1和材料2可以对(m+n)(m+n-4)+3分解因式.
【详解】
(1)c2-6c+8
=c2-6c+32-32+8
=(c-3)2-1
=(c-3+1)(c-3+1)
=(c-4)(c-2);
(2)①(a-b)2+2(a-b)+1
设a-b=t,
则原式=t2+2t+1=(t+1)2,
则(a-b)2+2(a-b)+1=(a-b+1)2;
②(m+n)(m+n-4)+3
设m+n=t,
则t(t-4)+3
=t2-4t+3
=t2-4t+22-22+3
=(t-2)2-1
=(t-2+1)(t-2-1)
=(t-1)(t-3),
则(m+n)(m+n-4)+3=(m+n-1)(m+n-3).
【点睛】
本题考查因式分解的应用,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行因式分解.
22、(1)①点C坐标为或;②y=x+2或y=-x+3;(2)或
【解析】
(1)①根据“和谐点”的定义即可解决问题;
②首先求出点C坐标,再利用待定系数法即可解决问题;
(2)分两种情形画出图形即可解决问题.
【详解】
(1)①如图1.
观察图象可知满足条件的点C坐标为C(1,5)或C'(3,5);
②如图2.
由图可知,B(5,3).
∵A(1,3),∴AB=3.
∵△ABC为等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).
设直线AC的表达式为y=kx+b(k≠0),当C1(5,7)时,,∴,∴y=x+2,当C2(5,﹣1)时,,∴,∴y=﹣x+3.
综上所述:直线AC的表达式是y=x+2或y=﹣x+3.
(2)分两种情况讨论:
①当点F在点E左侧时:
连接OD.则OD=,∴.
②当点F在点E右侧时:
连接OE,OD.
∵E(1,2),D(1,3),∴OE=,OD=,∴.
综上所述:或.
【点睛】
本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.
23、(1)a=6,b=8;(2);(3)A团有20人,B团有30人.
【解析】
(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;
(2)分0≤x≤10与x>10,利用待定系数法确定函数关系式求得y2的函数关系式即可;
(3)设A团有n人,表示出B团的人数为(50-n),然后分0≤x≤10与x>10两种情况,根据(2)中的函数关系式列出方程求解即可.
【详解】
(1)由y1图像上点(10,480),得到10人的费用为480元,
∴a=;
由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,
∴b=;
(2)
0≤x≤10时,设y2=k2x,把(10, 800)代入得10k2=800,
解得k2=80,
∴y2=80x,
x>10,设y2=kx+b,把(10, 800)和(20,1440)代入得
解得
∴y2=64x+160
∴
(3)设B团有n人,则A团的人数为(50-n)
当0≤n≤10时80n+48(50-n)=3040,
解得n=20(不符合题意舍去)
当n>10时,
解得n=30.
则50-n=20人,
则A团有20人,B团有30人.
【点睛】
此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.
24、(1)y;(2);(3)E(,0).
【解析】
(1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;
(2)由抛物线C1绕点B旋转180°得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;
(3)作GK⊥x轴于G,DH⊥AB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK∽△GFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E坐标.
【详解】
解:(1)∵抛物线C1的顶点为,
∴可设抛物线C1的表达式为y,
将B(﹣1,0)代入抛物线解析式得:,
∴,
解得:a,
∴抛物线C1的表达式为y,即y.
(2)设抛物线C2的顶点坐标为
∵抛物线C1绕点B旋转180°,得到抛物线C2,即点与点关于点B(﹣1,0)对称
∴抛物线C2的顶点坐标为()
可设抛物线C2的表达式为y
∵抛物线C2开口朝下,且形状不变
∴抛物线C2的表达式为y,即.
(3)如图,作GK⊥x轴于G,DH⊥AB于H.
由题意GK=DH=3,AH=HB=EK=KF,
∵四边形AGFD是矩形,
∴∠AGF=∠GKF=90°,
∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,
∴∠AGK=∠GFK.
∵∠AKG=∠FKG=90°,
∴△AGK∽△GFK,
∴,
∴,
∴AK=6,
,
∴BE=BK﹣EK=3,
∴OE,
∴E(,0).
【点睛】
本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.
25、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
【解析】
(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.
【详解】
(1)∵一次函数y=﹣x+b的图象与反比例函数y= (k≠0)图象交于A(﹣3,2)、B两点,
∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
∴b=,k=﹣6
∴一次函数解析式y=﹣,反比例函数解析式y=.
(2)根据题意得: ,
解得: ,
∴S△ABF=×4×(4+2)=12
(3)由图象可得:x<﹣2或0<x<4
【点睛】
本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.
26、解:(1)图见解析;
(2)证明见解析.
【解析】
(1)根据角平分线的作法作出∠ABC的平分线即可.
(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可.
【详解】
解:(1)如图所示:
(2)证明:∵BE平分∠ABC,
∴∠ABE=∠EAF.
∵平行四边形ABCD中,AD//BC
∴∠EBF=∠AEB,
∴∠ABE=∠AEB.
∴AB=AE.
∵AO⊥BE,
∴BO=EO.
∵在△ABO和△FBO中,
∠ABO=∠FBO ,BO=EO,∠AOB=∠FOB,
∴△ABO≌△FBO(ASA).
∴AO=FO.
∵AF⊥BE,BO=EO,AO=FO.
∴四边形ABFE为菱形.
27、(1);(2)MC•NC=5;(3)a+b的最小值为2;(4)以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为.
【解析】
(1)由题意得AO=OB=2、OC=3、AC=5、BC=1,根据MC=ACtan∠A= 、CN=可得答案;
(2)证△ACM∽△NCB得,由此即可求得答案;
(3)设MC=a、NC=b,由(2)知ab=5,由P是圆上异于A、B的动点知a>0,可得b=(a>0),根据反比例函数的性质得a+b不存在最大值,当a=b时,a+b最小,据此求解可得;
(4)设该圆与AC的交点为D,连接DM、DN,证△MDC∽△DNC得,即MC•NC=DC2=5,即DC=,据此知以MN为直径的一系列圆经过定点D,此顶点D在直线AB上且CD的长为.
【详解】
(1)如图所示,根据题意知,AO=OB=2、OC=3,
则AC=OA+OC=5,BC=OC﹣OB=1,
∵AC⊥直线l,
∴∠ACM=∠ACN=90°,
∴MC=ACtan∠A=5×=,
∵∠ABP=∠NBC,
∴∠BNC=∠A=30°,
∴CN=,
则MN=MC+CN=+=,
故答案为:;
(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,
∴△ACM∽△NCB,
∴,
即MC•NC=AC•BC=5×1=5;
(3)设MC=a、NC=b,
由(2)知ab=5,
∵P是圆上异于A、B的动点,
∴a>0,
∴b=(a>0),
根据反比例函数的性质知,a+b不存在最大值,当a=b时,a+b最小,
由a=b得a=,解之得a=(负值舍去),此时b=,
此时a+b的最小值为2;
(4)如图,设该圆与AC的交点为D,连接DM、DN,
∵MN为直径,
∴∠MDN=90°,
则∠MDC+∠NDC=90°,
∵∠DCM=∠DCN=90°,
∴∠MDC+∠DMC=90°,
∴∠NDC=∠DMC,
则△MDC∽△DNC,
∴,即MC•NC=DC2,
由(2)知MC•NC=5,
∴DC2=5,
∴DC=,
∴以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为.
【点睛】
本题考查的是圆的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用、反比例函数的性质等知识点.
陕西省西安市益新中学2022年十校联考最后数学试题含解析: 这是一份陕西省西安市益新中学2022年十校联考最后数学试题含解析,共21页。
陕西省商南县2022年十校联考最后数学试题含解析: 这是一份陕西省商南县2022年十校联考最后数学试题含解析,共21页。试卷主要包含了若x>y,则下列式子错误的是等内容,欢迎下载使用。
陕西省西安市交大附中达标名校2022年十校联考最后数学试题含解析: 这是一份陕西省西安市交大附中达标名校2022年十校联考最后数学试题含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,正确的是,下列运算正确的是等内容,欢迎下载使用。