|试卷下载
搜索
    上传资料 赚现金
    2022年四川省南充市重点达标名校中考一模数学试题含解析
    立即下载
    加入资料篮
    2022年四川省南充市重点达标名校中考一模数学试题含解析01
    2022年四川省南充市重点达标名校中考一模数学试题含解析02
    2022年四川省南充市重点达标名校中考一模数学试题含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省南充市重点达标名校中考一模数学试题含解析

    展开
    这是一份2022年四川省南充市重点达标名校中考一模数学试题含解析,共26页。试卷主要包含了若二次函数的图象经过点,在一组数据等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
    A. B. C. D.
    2.的相反数是(  )
    A.2 B.﹣2 C.4 D.﹣
    3.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△BEC=S△ADF.其中正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    4.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了(  )
    A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%
    5.若二次函数的图象经过点(﹣1,0),则方程的解为( )
    A., B., C., D.,
    6.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于(  )
    A.3.5 B.4 C.7 D.14
    7.已知3a﹣2b=1,则代数式5﹣6a+4b的值是(  )
    A.4 B.3 C.﹣1 D.﹣3
    8.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=(  )

    A.35° B.60° C.70° D.70°或120°
    9.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有( )

    A.2个 B.3个 C.4个 D.5个
    10.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是(  )
    A.中位数不变,方差不变 B.中位数变大,方差不变
    C.中位数变小,方差变小 D.中位数不变,方差变小
    11.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为(  )

    A.50m B.25m C.(50﹣)m D.(50﹣25)m
    12.一元二次方程的根的情况是( )
    A.有一个实数根 B.有两个相等的实数根
    C.有两个不相等的实数根 D.没有实数根
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若am=5,an=6,则am+n=________.
    14.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为__________ .

    15.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.

    16.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.
    17.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.
    18.________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)观察下列等式:
    22﹣2×1=12+1①
    32﹣2×2=22+1②
    42﹣2×3=32+1③
    …第④个等式为   ;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.
    20.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
    21.(6分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.
    (1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为   (填“真”或“假”)命题,并说明理由;
    (2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;
    (3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.

    22.(8分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.
    (1)求证:;
    (2)若,求tan∠CED的值.

    23.(8分)如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
    (1)求证:AC=CE;
    (2)求证:BC2﹣AC2=AB•AC;
    (1)已知⊙O的半径为1.
    ①若=,求BC的长;
    ②当为何值时,AB•AC的值最大?

    24.(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.
    (1)求点C和点A的坐标.
    (2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),
    ①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;
    ②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;
    ③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.

    25.(10分)有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后, 能被x0+3整除,…,能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.
    例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;
    再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.
    (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.
    (2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.
    26.(12分)解分式方程: -1=
    27.(12分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
    求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B.
    【解析】
    试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
    考点:由实际问题抽象出一元二次方程.
    2、A
    【解析】
    分析:根据只有符号不同的两个数是互为相反数解答即可.
    详解:的相反数是,即2.
    故选A.
    点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
    3、C
    【解析】
    根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.
    【详解】
    ∵在△ABC中,AD和BE是高,
    ∴∠ADB=∠AEB=∠CEB=90°,
    ∵点F是AB的中点,
    ∴FD=AB,FE=AB,
    ∴FD=FE,①正确;
    ∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
    ∴∠ABC=∠C,
    ∴AB=AC,
    ∵AD⊥BC,
    ∴BC=2CD,∠BAD=∠CAD=∠CBE,
    在△AEH和△BEC中, ,
    ∴△AEH≌△BEC(ASA),
    ∴AH=BC=2CD,②正确;
    ∵∠BAD=∠CBE,∠ADB=∠CEB,
    ∴△ABD∽△BCE,
    ∴,即BC•AD=AB•BE,
    ∵∠AEB=90°,AE=BE,
    ∴AB=BE
    BC•AD=BE•BE,
    ∴BC•AD=AE2;③正确;
    设AE=a,则AB=a,
    ∴CE=a﹣a,
    ∴=,
    即 ,
    ∵AF=AB,
    ∴ ,
    ∴S△BEC≠S△ADF,故④错误,
    故选:C.
    【点睛】
    本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    4、D
    【解析】
    设第一季度的原产值为a,则第二季度的产值为 ,第三季度的产值为 ,则则第三季度的产值比第一季度的产值增长了
    故选D.
    5、C
    【解析】
    ∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.
    故选C.
    考点:抛物线与x轴的交点.
    6、A
    【解析】
    根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB.
    【详解】
    ∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.
    ∵H为AD边中点,∴OH是△ABD的中位线,∴OHAB7=3.1.

    故选A.
    【点睛】
    本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.
    7、B
    【解析】
    先变形,再整体代入,即可求出答案.
    【详解】
    ∵3a﹣2b=1,
    ∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,
    故选:B.
    【点睛】
    本题考查了求代数式的值,能够整体代入是解此题的关键.
    8、D
    【解析】
    ①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.
    【详解】

    ①当点B落在AB边上时,
    ∵,
    ∴,
    ∴,
    ②当点B落在AC上时,
    在中,
    ∵∠C=90°, ,
    ∴,
    ∴,
    故选D.
    【点睛】
    本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.
    9、C
    【解析】
    分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.
    【详解】
    如图,

    分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.
    ∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.
    故选C.
    【点睛】
    本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.
    10、D
    【解析】
    根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.
    【详解】
    ∵原数据的中位数是=3,平均数为=3,
    ∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;
    ∵新数据的中位数为3,平均数为=3,
    ∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;
    所以新数据与原数据相比中位数不变,方差变小,
    故选:D.
    【点睛】
    本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.
    11、C
    【解析】
    如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.
    【详解】
    如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.
    则AB=MN,AM=BN.
    在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.
    在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).
    则AB=MN=(50﹣)m.
    故选C.

    【点睛】
    本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
    12、D
    【解析】
    试题分析:△=22-4×4=-12<0,故没有实数根;
    故选D.
    考点:根的判别式.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    根据同底数幂乘法性质am·an=am+n,即可解题.
    【详解】
    解:am+n= am·an=5×6=1.
    【点睛】
    本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.
    14、
    【解析】
    设扇形的圆心角为n°,则根据扇形的弧长公式有: ,解得
    所以
    15、
    【解析】
    根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可.
    【详解】
    ∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=交于第一象限点C,若BC=2AB,设点C的坐标为(c,)
    ∴OA=0.5c,OB==,
    ∴S△AOB===
    【点睛】
    此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.
    16、
    【解析】
    由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.
    【详解】
    ∵2x-y=,
    ∴-6x+3y=-.
    ∴原式=--1=-.
    故答案为-.
    【点睛】
    本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.
    17、
    【解析】
    ∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,
    ∴其概率是=.
    【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    18、1
    【解析】
    先将二次根式化为最简,然后再进行二次根式的乘法运算即可.
    【详解】
    解:原式=2×=1.
    故答案为1.
    【点睛】
    本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.
    【解析】
    (1)根据①②③的规律即可得出第④个等式;
    (2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.
    【详解】
    (1)∵22﹣2×1=12+1①
    32﹣2×2=22+1②
    42﹣2×3=32+1③
    ∴第④个等式为52﹣2×4=42+1,
    故答案为:52﹣2×4=42+1,
    (2)第n个等式为(n+1)2﹣2n=n2+1.
    (n+1)2﹣2n=n2+2n+1﹣2n=n2+1.
    【点睛】
    本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.
    20、(1)(2).
    【解析】
    (1)根据总共三种,A只有一种可直接求概率;
    (2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
    【详解】
    解: (1)甲投放的垃圾恰好是A类的概率是.
    (2)列出树状图如图所示:

    由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
    所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
    即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
    21、(1)真;(2);(3)或或.
    【解析】
    (1)先根据直角三角形斜边的中线等于斜边的一半可知MP=MB,从而∠MPB=∠MBP,然后根据三角形外角的性质说明即可;
    (2)先证明△PAC∽△PMB,然后根据相似三角形的性质求解即可;
    (3)分三种情况求解:P为线段AB上的“好点”, P为线段AB延长线上的“好点”, P为线段BA延长线上的“好点”.
    【详解】
    (1)真 .
    理由如下:如图,当∠ABC=90°时,M为PC中点,BM=PM,
    则∠MPB=∠MBP>∠ACP,
    所以在线段AB上不存在“好点”;

    (2)∵P为BA延长线上一个“好点”;
    ∴∠ACP=∠MBP;
    ∴△PAC∽△PMB;
    ∴即;
    ∵M为PC中点,
    ∴MP=2;
    ∴;
    ∴.
    (3)第一种情况,P为线段AB上的“好点”,则∠ACP=∠MBA,找AP中点D,连结MD;
    ∵M为CP中点;
    ∴MD为△CPA中位线;
    ∴MD=2,MD//CA;
    ∴∠DMP=∠ACP=∠MBA;
    ∴△DMP∽△DBM;
    ∴DM2=DP·DB即4= DP·(5DP);
    解得DP=1,DP=4(不在AB边上,舍去;)
    ∴AP=2

    第二种情况(1),P为线段AB延长线上的“好点”,则∠ACP=∠MBA,找AP中点D,此时,D在线段AB上,如图,连结MD;

    ∵M为CP中点;
    ∴MD为△CPA中位线;
    ∴MD=2,MD//CA;
    ∴∠DMP=∠ACP=∠MBA;
    ∴△DMP∽△DBM
    ∴DM2=DP·DB即4= DP·(5DA)= DP·(5DP);
    解得DP=1(不在AB延长线上,舍去),DP=4
    ∴AP=8;
    第二种情况(2),P为线段AB延长线上的“好点”,找AP中点D,此时,D在AB延长线上,如图,连结MD;

    此时,∠MBA>∠MDB>∠DMP=∠ACP,则这种情况不存在,舍去;

    第三种情况,P为线段BA延长线上的“好点”,则∠ACP=∠MBA,
    ∴△PAC∽△PMB;

    ∴BM垂直平分PC则BC=BP= ;

    ∴综上所述,或或;
    【点睛】
    本题考查了信息迁移,三角形外角的性质,直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.
    22、(1)见解析;(2)tan∠CED=
    【解析】
    (1)欲证明,只要证明即可;
    (2)由,可得,设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,由,可得BD•BE=BC•BA,设AC=BC=x,则有,由此求出AC、CD即可解决问题.
    【详解】
    (1)证明:如下图,连接AE,
    ∵AD是直径,
    ∴,
    ∴DC⊥AB,
    ∵AC=CB,
    ∴DA=DB,
    ∴∠CDA=∠CDB,
    ∵,,
    ∴∠BDC=∠EAC,
    ∵∠AEC=∠ADC,
    ∴∠EAC=∠AEC,
    ∴;
    (2)解:如下图,连接OC,
    ∵AO=OD,AC=CB,
    ∴OC∥BD,
    ∴,
    ∴,
    设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,
    ∵∠BAD=∠BEC,∠B=∠B,
    ∴,
    ∴BD•BE=BC•BA,设AC=BC=x,
    则有,
    ∴,
    ∴,
    ∴,
    ∴.

    【点睛】
    本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.
    23、(1)证明见解析;(2)证明见解析;(1)①BC=4;②
    【解析】
    分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
    (2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;
    (1)①设AB=5k、AC=1k,由BC2-AC2=AB•AC知BC=2k,连接ED交BC于点M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.
    详解:(1)∵四边形EBDC为菱形,
    ∴∠D=∠BEC,
    ∵四边形ABDC是圆的内接四边形,
    ∴∠A+∠D=180°,
    又∠BEC+∠AEC=180°,
    ∴∠A=∠AEC,
    ∴AC=CE;
    (2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,

    由(1)知AC=CE=CD,
    ∴CF=CG=AC,
    ∵四边形AEFG是⊙C的内接四边形,
    ∴∠G+∠AEF=180°,
    又∵∠AEF+∠BEF=180°,
    ∴∠G=∠BEF,
    ∵∠EBF=∠GBA,
    ∴△BEF∽△BGA,
    ∴,即BF•BG=BE•AB,
    ∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
    ∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
    (1)设AB=5k、AC=1k,
    ∵BC2﹣AC2=AB•AC,
    ∴BC=2k,
    连接ED交BC于点M,
    ∵四边形BDCE是菱形,
    ∴DE垂直平分BC,
    则点E、O、M、D共线,
    在Rt△DMC中,DC=AC=1k,MC=BC=k,
    ∴DM=,
    ∴OM=OD﹣DM=1﹣k,
    在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,
    解得:k=或k=0(舍),
    ∴BC=2k=4;
    ②设OM=d,则MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,
    ∴BC2=(2MC)2=16﹣4d2,
    AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,
    由(2)得AB•AC=BC2﹣AC2
    =﹣4d2+6d+18
    =﹣4(d﹣)2+,
    ∴当d=,即OM=时,AB•AC最大,最大值为,
    ∴DC2=,
    ∴AC=DC=,
    ∴AB=,此时.
    点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
    24、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)
    【解析】
    (1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;
    (2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.
    【详解】
    (1)令y=0得:x2-1x+3=0,解得:x=1或x=3,
    ∴A(1,0),B(3,0),
    ∴抛物线的对称轴为x=2,
    将x=2代入抛物线的解析式得:y=-1,
    ∴C(2,-1);
    (2)①将x=0代入抛物线的解析式得:y=3,
    ∴抛物线与y轴交点坐标为(0,3),
    如图所示:作直线y=3,

    由图象可知:直线y=3与“L双抛图形”有3个交点,
    故答案为3;
    ②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,
    由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,
    故答案为0<t<1.
    ③如图2所示:

    ∵PQ∥AC且PQ=AC,
    ∴四边形ACQP为平行四边形,
    又∵点C的纵坐标为-1,
    ∴点P的纵坐标为1,
    将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.
    ∴点P的坐标为(+2,1)或(-+2,1),
    当点P(-1,0)时,也满足条件.
    综上所述,满足条件的点(+2,1)或(-+2,1)或(-1,0)
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.
    25、 (1)见解析;(2) 201,207,1
    【解析】
    试题分析:(1)先设出两位自然数的十位数字,表示出这个两位自然数,和轮换两位自然数即可;
    (2)先表示出三位自然数和轮换三位自然数,再根据能被5整除,得出b的可能值,进而用4整除,得出c的可能值,最后用能被3整除即可.
    试题解析:
    (1)设两位自然数的十位数字为x,则个位数字为2x,
    ∴这个两位自然数是10x+2x=12x,
    ∴这个两位自然数是12x能被6整除,
    ∵依次轮换个位数字得到的两位自然数为10×2x+x=21x
    ∴轮换个位数字得到的两位自然数为21x能被7整除,
    ∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”.
    (2)∵三位自然数是3的一个“轮换数”,且a=2,
    ∴100a+10b+c能被3整除,
    即:10b+c+200能被3整除,
    第一次轮换得到的三位自然数是100b+10c+a能被4整除,
    即100b+10c+2能被4整除,
    第二次轮换得到的三位自然数是100c+10a+b能被5整除,
    即100c+b+20能被5整除,
    ∵100c+b+20能被5整除,
    ∴b+20的个位数字不是0,便是5,
    ∴b=0或b=5,
    当b=0时,
    ∵100b+10c+2能被4整除,
    ∴10c+2能被4整除,
    ∴c只能是1,3,5,7,9;
    ∴这个三位自然数可能是为201,203,205,207,209,
    而203,205,209不能被3整除,
    ∴这个三位自然数为201,207,
    当b=5时,∵100b+10c+2能被4整除,
    ∴10c+502能被4整除,
    ∴c只能是1,5,7,9;
    ∴这个三位自然数可能是为251,1,257,259,
    而251,257,259不能被3整除,
    ∴这个三位自然数为1,
    即这个三位自然数为201,207,1.
    【点睛】此题是数的整除性,主要考查了3的倍数,4的倍数,5的倍数的特点,解本题的关键是用5的倍数求出b的值.
    26、7
    【解析】
    根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.
    【详解】
    -1=
    3-(x-3)=-1
    3-x+3=-1
    x=7
    【点睛】
    此题主要考查分式方程的求解,解题的关键是正确去掉分母.
    27、(1)y=x2﹣2x﹣3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,﹣2)
    【解析】
    (1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;
    (2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;
    (3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).
    【详解】
    解:(1)∵抛物线y=x2+bx+c经过点A、C,
    把点A(﹣1,0),C(0,﹣3)代入,得:,
    解得,
    ∴抛物线的解析式为y=x2﹣2x﹣3;
    (2)如图,作CH⊥EF于H,
    ∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴抛物线的顶点坐标E(1,﹣4),
    设N的坐标为(1,n),﹣4≤n≤0
    ∵∠MNC=90°,
    ∴∠CNH+∠MNF=90°,
    又∵∠CNH+∠NCH=90°,
    ∴∠NCH=∠MNF,
    又∵∠NHC=∠MFN=90°,
    ∴Rt△NCH∽△MNF,
    ∴,即
    解得:m=n2+3n+1=,
    ∴当时,m最小值为;
    当n=﹣4时,m有最大值,m的最大值=16﹣12+1=1.
    ∴m的取值范围是.
    (3)设点P(x1,y1),Q(x2,y2),
    ∵过点P作x轴平行线交抛物线于点H,
    ∴H(﹣x1,y1),
    ∵y=kx+2,y=x2,
    消去y得,x2﹣kx﹣2=0,
    x1+x2=k,x1x2=﹣2,
    设直线HQ表达式为y=ax+t,
    将点Q(x2,y2),H(﹣x1,y1)代入,得,
    ∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,
    ∴a=x2﹣x1,
    ∵=( x2﹣x1)x2+t,
    ∴t=﹣2,
    ∴直线HQ表达式为y=( x2﹣x1)x﹣2,
    ∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).


    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.

    相关试卷

    四川省南充市南部县重点名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份四川省南充市南部县重点名校2021-2022学年中考冲刺卷数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,若关于x的一元二次方程x等内容,欢迎下载使用。

    2022年四川省达州地区重点达标名校中考冲刺卷数学试题含解析: 这是一份2022年四川省达州地区重点达标名校中考冲刺卷数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果为等内容,欢迎下载使用。

    2022年安徽省和县重点达标名校中考数学模试卷含解析: 这是一份2022年安徽省和县重点达标名校中考数学模试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,当函数y=等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map