2022年四川省眉山市龙正区重点达标名校中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )
A.向左平移1个单位 B.向右平移3个单位
C.向上平移3个单位 D.向下平移1个单位
2.多项式ax2﹣4ax﹣12a因式分解正确的是( )
A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)
3.若关于x的不等式组无解,则a的取值范围是( )
A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3
4.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( )
A.20° B.40° C.60° D.80°
5.如图图形中是中心对称图形的是( )
A. B.
C. D.
6.已知,下列说法中,不正确的是( )
A. B.与方向相同
C. D.
7.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是( )
A. B. C. D.
8.a、b互为相反数,则下列成立的是( )
A.ab=1 B.a+b=0 C.a=b D.=-1
9.某中学篮球队12名队员的年龄如下表:
年龄:(岁)
13
14
15
16
人数
1
5
4
2
关于这12名队员的年龄,下列说法错误的是( )
A.众数是14岁 B.极差是3岁 C.中位数是14.5岁 D.平均数是14.8岁
10.下列各式中,正确的是( )
A.t5·t5 = 2t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t2·t3 = t5
11.某市从今年1月1日起调整居民用水价格,每立方米水费上涨 .小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m1.求该市今年居民用水的价格.设去年居民用水价格为x元/m1,根据题意列方程,正确的是( )
A. B.
C. D.
12.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________
14.已知双曲线经过点(-1,2),那么k的值等于_______.
15.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.
16.如图,小阳发现电线杆的影子落在土坡的坡面和地面上,量得,米,与地面成角,且此时测得米的影长为米,则电线杆的高度为__________米.
17.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为 .
18.计算tan260°﹣2sin30°﹣cos45°的结果为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.
20.(6分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.
21.(6分)﹣(﹣1)2018+﹣()﹣1
22.(8分)一道选择题有四个选项.
(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;
(2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.
23.(8分)如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).
24.(10分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:
(1)调查了________名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;
(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
25.(10分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.
根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:
请你补全条形统计图;在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.
26.(12分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.
综合运用:在你所作的图中,AB与⊙O的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.
27.(12分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.
(1)求每部型手机和型手机的销售利润;
(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.
①求关于的函数关系式;
②该手机店购进型、型手机各多少部,才能使销售总利润最大?
(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;
B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;
C.平移后,得y=x2+3,图象经过A点,故C不符合题意;
D.平移后,得y=x2−1图象不经过A点,故D符合题意;
故选D.
2、A
【解析】
试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.
解:ax2﹣4ax﹣12a
=a(x2﹣4x﹣12)
=a(x﹣6)(x+2).
故答案为a(x﹣6)(x+2).
点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.
3、A
【解析】
【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.
【详解】∵不等式组无解,
∴a﹣4≥3a+2,
解得:a≤﹣3,
故选A.
【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.
4、C
【解析】
根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.
【详解】
∵,,
∴,
∵,
∴,
∵,
∴,
故选C.
【点睛】
本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.
5、B
【解析】
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.
【详解】
解:根据中心对称图形的定义可知只有B选项是中心对称图形,故选择B.
【点睛】
本题考察了中心对称图形的含义.
6、A
【解析】
根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.
【详解】
A、,故该选项说法错误
B、因为,所以与的方向相同,故该选项说法正确,
C、因为,所以,故该选项说法正确,
D、因为,所以;故该选项说法正确,
故选:A.
【点睛】
本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.
7、B
【解析】
分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.
详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;
故选B.
点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.
8、B
【解析】
依据相反数的概念及性质即可得.
【详解】
因为a、b互为相反数,
所以a+b=1,
故选B.
【点睛】
此题主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1.
9、D
【解析】
分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.
解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;
极差是:16﹣13=3,故选项B正确,不合题意;
中位数是:14.5,故选项C正确,不合题意;
平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.
故选D.
“点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.
10、D
【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.
11、A
【解析】
解:设去年居民用水价格为x元/cm1,根据题意列方程:
,故选A.
12、D
【解析】
试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.
考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.
【详解】
作PD⊥BC,则PD∥AC,
∴△PBD~△ABC,
∴ .
∵AC=3,BC=4,
∴AB=,
∵AP=2BP,
∴BP=,
∴,
∴点P运动的路径长=.
故答案为:.
【点睛】
本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.
14、-1
【解析】
分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.
15、AC=BC.
【解析】
分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.
详解:添加AC=BC,
∵△ABC的两条高AD,BE,
∴∠ADC=∠BEC=90°,
∴∠DAC+∠C=90°,∠EBC+∠C=90°,
∴∠EBC=∠DAC,
在△ADC和△BEC中
,
∴△ADC≌△BEC(AAS),
故答案为:AC=BC.
点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
16、(14+2)米
【解析】
过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.
【详解】
如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F.
∵CD=8,CD与地面成30°角,
∴DE=CD=×8=4,
根据勾股定理得:CE===4.
∵1m杆的影长为2m,
∴=,
∴EF=2DE=2×4=8,
∴BF=BC+CE+EF=20+4+8=(28+4).
∵=,
∴AB=(28+4)=14+2.
故答案为(14+2).
【点睛】
本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键.
17、15π.
【解析】
试题分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6π×5=15π.故答案为15π.
考点:圆锥的计算.
18、1
【解析】
分别算三角函数,再化简即可.
【详解】
解:原式=-2×-×
=1.
【点睛】
本题考查掌握简单三角函数值,较基础.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)详见解析;(2)1+
【解析】
(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.
【详解】
(1)证明:连结.如图,
与相切于点D,
是的直径,
即
(2)解:在中,
.
【点睛】
此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
20、证明见解析.
【解析】
【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.
【详解】∵BE=CF,
∴BE+EF=CF+EF,
∴BF=CE,
在△ABF和△DCE中
,
∴△ABF≌△DCE(SAS),
∴∠GEF=∠GFE,
∴EG=FG.
【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
21、-1.
【解析】
直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.
【详解】
原式=﹣1+1﹣3
=﹣1.
【点睛】
本题主要考查了实数运算,正确化简各数是解题的关键.
22、(1);(2)
【解析】
(1)直接利用概率公式求解;
(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.
【详解】
解:(1)选中的恰好是正确答案A的概率为;
(2)画树状图:
共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
所以选中的恰好是正确答案A,B的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
23、39米
【解析】
过点A作AE⊥CD,垂足为点E, 在Rt△ADE中,利用三角函数求出的长,在Rt△ACE中,求出的长即可得.
【详解】
解:过点A作AE⊥CD,垂足为点E,
由题意得,AE= BC=28,∠EAD=25°,∠EAC=43°,
在Rt△ADE中,∵,∴,
在Rt△ACE中,∵,∴,
∴(米),
答:建筑物CD的高度约为39米.
24、50 见解析(3)115.2° (4)
【解析】
试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;
(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;
(3)根据圆心角的度数=360 º×它所占的百分比计算;
(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.
解:(1)由题意可知该班的总人数=15÷30%=50(名)
故答案为50;
(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)
补全条形统计图如图所示:
(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,
故答案为115.2°;
(4)画树状图如图.
由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,
所以P(恰好选出一男一女)==.
点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.
25、(1)详见解析;(2)72°;(3)
【解析】
(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;
(2)用360°乘以C类别人数所占比例即可得;
(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.
【详解】
解:(1)∵ 抽 查的总人数为:(人)
∴ 类人数为:(人)
补全条形统计图如下:
(2)“碳酸饮料”所在的扇形的圆心角度数为:
(3)设男生为、,女生为、、,
画树状图得:
∴恰好抽到一男一女的情况共有12 种,分别是
∴ (恰好抽到一男一女).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
26、(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)⊙O 的半径为.
【解析】
综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB与⊙O的位置关系是相切;
(2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.
【详解】
(1)①作∠BAC的平分线,交BC于点O;
②以O为圆心,OC为半径作圆.AB与⊙O的位置关系是相切.
(2)相切;
∵AC=5,BC=12,
∴AD=5,AB==13,
∴DB=AB-AD=13-5=8,
设半径为x,则OC=OD=x,BO=(12-x)
x2+82=(12-x)2,
解得:x=.
答:⊙O的半径为.
【点睛】
本题考查了1.作图—复杂作图;2.角平分线的性质;3.勾股定理;4.切线的判定.
27、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.
【解析】
(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;
(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;
②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;
(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.
【详解】
解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.
根据题意,得,
解得
答:每部型手机的销售利润为元,每部型手机的销售利润为元.
(2)①根据题意,得,即.
②根据题意,得,解得.
,,
随的增大而减小.
为正整数,
当时,取最大值,.
即手机店购进部型手机和部型手机的销售利润最大.
(3)根据题意,得.
即,.
①当时,随的增大而减小,
当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;
②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;
③当时,,随的增大而增大,
当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.
【点睛】
本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.
四川省眉山市龙正区2022年中考数学最后冲刺浓缩精华卷含解析: 这是一份四川省眉山市龙正区2022年中考数学最后冲刺浓缩精华卷含解析,共22页。
2022年四川省广元市旺苍县重点达标名校中考数学押题卷含解析: 这是一份2022年四川省广元市旺苍县重点达标名校中考数学押题卷含解析,共15页。试卷主要包含了初三,八边形的内角和为,已知等内容,欢迎下载使用。
2022年四川省达州地区重点达标名校中考押题数学预测卷含解析: 这是一份2022年四川省达州地区重点达标名校中考押题数学预测卷含解析,共18页。试卷主要包含了将抛物线y=﹣等内容,欢迎下载使用。