|试卷下载
搜索
    上传资料 赚现金
    2022年武汉市重点中学中考联考数学试卷含解析
    立即下载
    加入资料篮
    2022年武汉市重点中学中考联考数学试卷含解析01
    2022年武汉市重点中学中考联考数学试卷含解析02
    2022年武汉市重点中学中考联考数学试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年武汉市重点中学中考联考数学试卷含解析

    展开
    这是一份2022年武汉市重点中学中考联考数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在数轴上标注了四段范围,如图,则表示的点落在( )

    A.段① B.段② C.段③ D.段④
    2. “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是(  )
    月用水量(吨)
    4
    5
    6
    9
    户数(户)
    3
    4
    2
    1
    A.中位数是5吨 B.众数是5吨 C.极差是3吨 D.平均数是5.3吨
    3.若关于x的不等式组无解,则a的取值范围是(  )
    A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3
    4.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )

    A.经过集中喷洒药物,室内空气中的含药量最高达到
    B.室内空气中的含药量不低于的持续时间达到了
    C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
    D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内
    5.下列运算中,正确的是(  )
    A.(a3)2=a5 B.(﹣x)2÷x=﹣x
    C.a3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x6
    6.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )

    A. B. C. D.
    7.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为(  )
    A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×105
    8.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为(  )
    A.﹣1 B.0 C.1或﹣1 D.2或0
    9.两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是( )

    A.无法求出 B.8 C.8 D.16
    10.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为(  )

    A.800sinα米 B.800tanα米 C.米 D.米
    11.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )

    A. B. C. D.
    12.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是(  )

    A.3 B.4 C.5 D.6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.

    14.分解因式: _________.
    15.分解因式:xy2﹣2xy+x=_____.
    16.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.

    17.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).

    18.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣3,点B表示的数为2x+1,点C表示的数为﹣4,若将△ABC向右滚动,则x的值等于_____,数字2012对应的点将与△ABC的顶点_____重合.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
    种类
    A
    B
    C
    D
    E
    出行方式
    共享单车
    步行
    公交车
    的士
    私家车

    根据以上信息,回答下列问题:
    (1)参与本次问卷调查的市民共有   人,其中选择B类的人数有   人;
    (2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;
    (3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.
    20.(6分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
    求证:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的长.
    21.(6分)计算:﹣|﹣2|+()﹣1﹣2cos45°
    22.(8分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.
    (1)如图1,连接AB′.
    ①若△AEB′为等边三角形,则∠BEF等于多少度.
    ②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.
    (2)如图2,连接CB′,求△CB′F周长的最小值.
    (3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.

    23.(8分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
    求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
    24.(10分)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)

    25.(10分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:

    (1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;
    (2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?
    (3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.
    26.(12分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
    求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
    27.(12分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:

    根据统计图所提供的倍息,解答下列问题:
    (1)本次抽样调查中的学生人数是多少人;
    (2 )补全条形统计图;
    (3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;
    (4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.
    ∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,
    所以应在③段上.
    故选C
    考点:实数与数轴的关系
    2、C
    【解析】
    根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.
    【详解】
    解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;
    B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;
    C、极差为9﹣4=5(吨),错误,故选项正确;
    D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.
    故选:C.
    【点睛】
    此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.
    3、A
    【解析】
    【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.
    【详解】∵不等式组无解,
    ∴a﹣4≥3a+2,
    解得:a≤﹣3,
    故选A.
    【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.
    4、C
    【解析】
    利用图中信息一一判断即可.
    【详解】
    解: A、正确.不符合题意.
    B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;
    C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;
    D、正确.不符合题意,
    故选C.
    【点睛】
    本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.
    5、D
    【解析】
    根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.
    【详解】
    ∵(a3)2=a6,
    ∴选项A不符合题意;
    ∵(-x)2÷x=x,
    ∴选项B不符合题意;
    ∵a3(-a)2=a5,
    ∴选项C不符合题意;
    ∵(-2x2)3=-8x6,
    ∴选项D符合题意.
    故选D.
    【点睛】
    此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.
    6、C
    【解析】
    △AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;
    解:(1)当0<x≤1时,如图,
    在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;
    ∵MN⊥AC,
    ∴MN∥BD;
    ∴△AMN∽△ABD,
    ∴=,
    即,=,MN=x;
    ∴y=AP×MN=x2(0<x≤1),
    ∵>0,
    ∴函数图象开口向上;
    (2)当1<x<2,如图,
    同理证得,△CDB∽△CNM,=,
    即=,MN=2-x;
    ∴y=
    AP×MN=x×(2-x),
    y=-x2+x;
    ∵-<0,
    ∴函数图象开口向下;
    综上答案C的图象大致符合.
    故选C.
    本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.
    7、A
    【解析】
    分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
    详解:1230000这个数用科学记数法可以表示为
    故选A.
    点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
    8、A
    【解析】
    把x=﹣1代入方程计算即可求出k的值.
    【详解】
    解:把x=﹣1代入方程得:1+2k+k2=0,
    解得:k=﹣1,
    故选:A.
    【点睛】
    此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
    9、D
    【解析】
    试题分析:设AB于小圆切于点C,连接OC,OB.

    ∵AB于小圆切于点C,
    ∴OC⊥AB,
    ∴BC=AC=AB=×8=4cm.
    ∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)
    又∵直角△OBC中,OB2=OC2+BC2
    ∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16π.
    故选D.
    考点:1.垂径定理的应用;2.切线的性质.
    10、D
    【解析】
    【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.
    【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,
    ∴tanα=,
    ∴AB=,
    故选D.
    【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.
    11、A
    【解析】
    观察所给的几何体,根据三视图的定义即可解答.
    【详解】
    左视图有2列,每列小正方形数目分别为2,1.
    故选A.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
    12、B
    【解析】
    分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
    解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.
    【详解】

    设AP,EF交于O点,
    ∵四边形ABCD为菱形,
    ∴BC∥AD,AB∥CD.
    ∵PE∥BC,PF∥CD,
    ∴PE∥AF,PF∥AE.
    ∴四边形AEFP是平行四边形.
    ∴S△POF=S△AOE.
    即阴影部分的面积等于△ABC的面积.
    ∵△ABC的面积等于菱形ABCD的面积的一半,
    菱形ABCD的面积=ACBD=5,
    ∴图中阴影部分的面积为5÷2=.
    14、
    【解析】
    先提取公因式b,再利用完全平方公式进行二次分解.
    解答:解:a1b-1ab+b,
    =b(a1-1a+1),…(提取公因式)
    =b(a-1)1.…(完全平方公式)
    15、x(y-1)2
    【解析】
    分析:先提公因式x,再用完全平方公式把继续分解.
    详解:
    =x()
    =x()2.
    故答案为x()2.
    点睛:本题考查了因式分解,有公因式先提公因式,然后再用公式法继续分解,因式分解必须分解到每个因式都不能再分解为止.
    16、
    【解析】
    试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.
    故答案为x>1.
    17、
    【解析】
    设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.
    解:如图所示,

    在RtABC中,tan∠ACB=,∴BC=,
    同理:BD=,
    ∵两次测量的影长相差8米,∴=8,
    ∴x=4,
    故答案为4.
    “点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.
    18、﹣1 C.
    【解析】
    ∵将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣1,点B表示的数为2x+1,点C表示的数为﹣4,
    ∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);
    ∴﹣1x=9,
    x=﹣1.
    故A表示的数为:x﹣1=﹣1﹣1=﹣6,
    点B表示的数为:2x+1=2×(﹣1)+1=﹣5,
    即等边三角形ABC边长为1,
    数字2012对应的点与﹣4的距离为:2012+4=2016,
    ∵2016÷1=672,C从出发到2012点滚动672周,
    ∴数字2012对应的点将与△ABC的顶点C重合.
    故答案为﹣1,C.
    点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)800,240;(2)补图见解析;(3)9.6万人.
    【解析】
    试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;
    (2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;
    (3)总人数乘以样本中A、B、C三类别百分比之和可得答案.
    试题解析:(1)本次调查的市民有200÷25%=800(人),
    ∴B类别的人数为800×30%=240(人),
    故答案为800,240;
    (2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,
    ∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),
    补全条形图如下:

    (3)12×(25%+30%+25%)=9.6(万人),
    答:估计该市“绿色出行”方式的人数约为9.6万人.
    考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图
    20、(1)见解析(2)6
    【解析】
    (1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.
    (2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.
    【详解】
    解:(1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AD∥BC
    ∴∠C+∠B=110°,∠ADF=∠DEC
    ∵∠AFD+∠AFE=110°,∠AFE=∠B,
    ∴∠AFD=∠C
    在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,
    ∴△ADF∽△DEC
    (2)∵四边形ABCD是平行四边形,
    ∴CD=AB=1.
    由(1)知△ADF∽△DEC,
    ∴,

    在Rt△ADE中,由勾股定理得:
    21、+1
    【解析】
    分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案.
    详解:原式=2﹣2+3﹣2×
    =2+1﹣
    =+1.
    点睛:本题主要考查了实数运算,正确化简各数是解题的关键.
    22、(1)①∠BEF=60°;②A B'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.
    【解析】
    (1)①当△AEB′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF= ∠BE B′= ×120°=60°;②依据AE=B′E,可得∠EA B′=∠E B′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BA B′,进而得出EF∥A B′;
    (2)由折叠可得,CF+ B′F=CF+BF=BC=10,依据B′E+ B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;
    (3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.
    【详解】
    (1)①当△AE B′为等边三角形时,∠AE B′=60°,
    由折叠可得,∠BEF=∠BE B′=×120°=60°,
    故答案为60;
    ②A B′∥EF,
    证明:∵点E是AB的中点,
    ∴AE=BE,
    由折叠可得BE=B′E,
    ∴AE=B′E,
    ∴∠EA B′=∠E B′A,
    又∵∠BEF=∠B′EF,
    ∴∠BEF=∠BA B′,
    ∴EF∥A B′;
    (2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,
    ∴CF+ B′F=CF+BF=BC=10,
    ∵B′E+ B′C≥CE,
    ∴B′C≥CE﹣B′E=5﹣5,
    ∴B′C最小值为5﹣5,
    ∴△CB′F周长的最小值=10+5﹣5=5+5;
    (3)如图,连接A B′,易得∠A B′B=90°,
    将△AB B′和△AP B′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,
    由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,
    由AB=10,B B′=6,可得A B′=8,
    ∴QM=QN=A B′=8,
    设P B′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.
    ∵∠BQP=90°,
    ∴22+(8﹣x)2=(6+x)2,
    解得:x=,
    ∴P B′=x=.



    【点睛】
    本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    23、(1)见解析(2)见解析
    【解析】
    试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
    (2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.
    试题分析:(1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD.
    ∵BE∥DF,BE=DF,
    ∴四边形BFDE是平行四边形.
    ∵DE⊥AB,
    ∴∠DEB=90°,
    ∴四边形BFDE是矩形;
    (2)∵四边形ABCD是平行四边形,
    ∴AB∥DC,
    ∴∠DFA=∠FAB.
    在Rt△BCF中,由勾股定理,得
    BC===5,
    ∴AD=BC=DF=5,
    ∴∠DAF=∠DFA,
    ∴∠DAF=∠FAB,
    即AF平分∠DAB.
    【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.
    24、凉亭P到公路l的距离为273.2m.
    【解析】
    分析:作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.
    【详解】
    详解:作PD⊥AB于D.

    设BD=x,则AD=x+1.
    ∵∠EAP=60°,
    ∴∠PAB=90°﹣60°=30°.
    在Rt△BPD中,
    ∵∠FBP=45°,
    ∴∠PBD=∠BPD=45°,
    ∴PD=DB=x.
    在Rt△APD中,
    ∵∠PAB=30°,
    ∴PD=tan30°•AD,
    即DB=PD=tan30°•AD=x=(1+x),
    解得:x≈273.2,
    ∴PD=273.2.
    答:凉亭P到公路l的距离为273.2m.
    【点睛】
    此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.
    25、(1)50(2)420(3)P=
    【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;
    (2)由题意可求得130~145分所占比例,进而求出答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.
    试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);
    则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);
    如图:

    (2)根据题意得:考试成绩评为“B”的学生大约有×1600=448(名),
    答:考试成绩评为“B”的学生大约有448名;
    (3)画树状图得:

    ∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,
    ∴所选两名学生刚好是一名女生和一名男生的概率为: =.
    考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识
    视频
    26、 (1)证明见解析;(2)四边形BDCF是矩形,理由见解析.
    【解析】
    (1)证明:∵CF∥AB,
    ∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,
    ∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.
    (2)四边形BDCF是矩形.
    证明:由(1)知DB=CF,又DB∥CF,
    ∴四边形BDCF为平行四边形.
    ∵AC=BC,AD=DB,∴CD⊥AB.
    ∴四边形BDCF是矩形.
    27、(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4).
    【解析】
    (1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;
    (2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;
    (3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;
    (4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.
    【详解】
    (1)30÷30%=100,
    所以本次抽样调查中的学生人数为100人;
    (2)选”舞蹈”的人数为100×10%=10(人),
    选“打球”的人数为100﹣30﹣10﹣20=40(人),
    补全条形统计图为:

    (3)2000×=800,
    所以估计该校课余兴趣爱好为“打球”的学生人数为800人;
    (4)画树状图为:

    共有12种等可能的结果数,其中选到一男一女的结果数为8,
    所以选到一男一女的概率=.
    【点睛】
    本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.

    相关试卷

    2022年随州市重点中学中考联考数学试卷含解析: 这是一份2022年随州市重点中学中考联考数学试卷含解析,共29页。试卷主要包含了若分式有意义,则a的取值范围为等内容,欢迎下载使用。

    2022年廊坊市重点中学中考联考数学试卷含解析: 这是一份2022年廊坊市重点中学中考联考数学试卷含解析,共17页。试卷主要包含了规定,已知点P等内容,欢迎下载使用。

    2022年海南市重点中学中考联考数学试卷含解析: 这是一份2022年海南市重点中学中考联考数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,方程的解为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map