湖北省武汉市武昌区南湖中学2022年中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:
选手
1
2
3
4
5
6
7
8
9
10
时间(min)
129
136
140
145
146
148
154
158
165
175
由此所得的以下推断不正确的是( )
A.这组样本数据的平均数超过130
B.这组样本数据的中位数是147
C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差
D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好
2.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )
A. B. C. D.1
3.如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )
A. B. C. D.
4.下列调查中,最适合采用全面调查(普查)方式的是( )
A.对重庆市初中学生每天阅读时间的调查
B.对端午节期间市场上粽子质量情况的调查
C.对某批次手机的防水功能的调查
D.对某校九年级3班学生肺活量情况的调查
5.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为( )
A.9cm B.13cm C.16cm D.10cm
6.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<1;②a+b=1;③4ac﹣b2=4a;④a+b+c<1.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
7.如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )
A. B.
C. D.
8.若函数与y=﹣2x﹣4的图象的交点坐标为(a,b),则的值是( )
A.﹣4 B.﹣2 C.1 D.2
9.如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则弦BC的长为( )
A. B.2 C.3 D.1.5
10.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )
A.1∶3 B.2∶3 C.∶2 D.∶3
二、填空题(共7小题,每小题3分,满分21分)
11.如图,的半径为,点,,,都在上,,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_____.(结果保留)
12.下列说法正确的是_____.(请直接填写序号)
①“若a>b,则>.”是真命题.②六边形的内角和是其外角和的2倍.③函数y= 的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.
13.有一组数据:3,5,5,6,7,这组数据的众数为_____.
14.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.
15.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:
①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC
其中正确的是_____(填序号)
16.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.
17.如图,直线经过、两点,则不等式的解集为_______.
三、解答题(共7小题,满分69分)
18.(10分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;将线段绕点逆时针旋转90°得到线段.画出线段;以为顶点的四边形的面积是 个平方单位.
19.(5分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。(保留作图痕迹,不写做法)
20.(8分)用你发现的规律解答下列问题.
┅┅计算 .探究 .(用含有的式子表示)若的值为,求的值.
21.(10分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)
22.(10分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.
23.(12分)列方程解应用题:
某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.
24.(14分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.
详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.
点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.
2、B
【解析】
分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
详解: 由于点P在运动中保持∠APD=90°, ∴点P的路径是一段以AD为直径的弧,
设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
在Rt△QDC中,QC=, ∴CP=QC-QP=,故选B.
点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.
3、B
【解析】
根据左视图的定义,从左侧会发现两个正方形摞在一起.
【详解】
从左边看上下各一个小正方形,如图
故选B.
4、D
【解析】
A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;
B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;
C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;
D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;
故选D.
5、A
【解析】
试题分析:由折叠的性质知,CD=DE,BC=BE.
易求AE及△AED的周长.
解:由折叠的性质知,CD=DE,BC=BE=7cm.
∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.
△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).
故选A.
点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
6、C
【解析】
①根据图象知道:a<1,c>1,∴ac<1,故①正确;
②∵顶点坐标为(1/2 ,1),∴x="-b/2a" ="1/2" ,∴a+b=1,故②正确;
③根据图象知道:x=1时,y=a++b+c>1,故③错误;
④∵顶点坐标为(1/2 ,1),∴=1,∴4ac-b2=4a,故④正确.
其中正确的是①②④.故选C
7、B
【解析】
先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象
【详解】
根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高
为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形
完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S
关于t的图象的中间部分为水平的线段,故A,D选项错误;
当t=0时,S=0,故C选项错误,B选项正确;
故选:B
【点睛】
本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键
8、B
【解析】
求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可.
【详解】
解方程组,
把①代入②得:=﹣2x﹣4,
整理得:x2+2x+1=0,
解得:x=﹣1,
∴y=﹣2,
交点坐标是(﹣1,﹣2),
∴a=﹣1,b=﹣2,
∴=﹣1﹣1=﹣2,
故选B.
【点睛】
本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值.
9、A
【解析】
分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×,即可推出BC=2BH=,
详解:作OH⊥BC于H.
∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,
∴∠BOC=120°,
∵OH⊥BC,OB=OC,
∴BH=HC,∠BOH=∠HOC=60°,
在Rt△BOH中,BH=OB•sin60°=1×=,
∴BC=2BH=.
故选A.
点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线.
10、A
【解析】
∵DE⊥AC,EF⊥AB,FD⊥BC,
∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
∴∠C=∠FDE,
同理可得:∠B=∠DFE,∠A=DEF,
∴△DEF∽△CAB,
∴△DEF与△ABC的面积之比= ,
又∵△ABC为正三角形,
∴∠B=∠C=∠A=60°
∴△EFD是等边三角形,
∴EF=DE=DF,
又∵DE⊥AC,EF⊥AB,FD⊥BC,
∴△AEF≌△CDE≌△BFD,
∴BF=AE=CD,AF=BD=EC,
在Rt△DEC中,
DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
又∵DC+BD=BC=AC=DC,
∴,
∴△DEF与△ABC的面积之比等于:
故选A.
点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.
二、填空题(共7小题,每小题3分,满分21分)
11、.
【解析】
根据题意先利用旋转的性质得到∠BOD=120°,则∠AOD=150°,然后根据弧长公式计算即可.
【详解】
解:∵扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,
∴∠BOD=120°,
∴∠AOD=∠AOB+∠BOD=30°+120°=150°,
∴的长=.
故答案为:.
【点睛】
本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.
12、②④⑤
【解析】
根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.
【详解】
①“若a>b,当c<0时,则<,故①是假命题;
②六边形的内角和是其外角和的2倍,根据②真命题;
③函数y=的自变量的取值范围是x≥﹣1且x≠0,故③是假命题;
④三角形的中位线平行于第三边,并且等于第三边的一半,故④是真命题;
⑤正方形既是轴对称图形,又是中心对称图形,故⑤是真命题;
故答案为②④⑤
【点睛】
本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.
13、1
【解析】
根据众数的概念进行求解即可得.
【详解】
在数据3,1,1,6,7中1出现次数最多,
所以这组数据的众数为1,
故答案为:1.
【点睛】
本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键.
14、3﹣1
【解析】
通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.
【详解】
如图,当Q在对角线BD上时,BQ最小.
连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.
∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).
故答案为3﹣1.
【点睛】
本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.
15、①②④
【解析】
由正方形的性质和相似三角形的判定与性质,即可得出结论.
【详解】
∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
∴BE=2AE;故①正确;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH;故②正确;
∵∠FDP=∠PBD=15°,∠ADB=45°,
∴∠PDB=30°,而∠DFP=60°,
∴∠PFD≠∠PDB,
∴△PFD与△PDB不会相似;故③错误;
∵∠PDH=∠PCD=30°,∠DPH=∠DPC,
∴△DPH∽△CPD,
∴,
∴DP2=PH•PC,故④正确;
故答案是:①②④.
【点睛】
本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.
16、﹣2
【解析】
∵反比例函数的图象过点A(m,3),
∴,解得.
17、-1<X<2
【解析】
经过点A,
∴不等式x>kx+b>-2的解集为.
三、解答题(共7小题,满分69分)
18、(1)画图见解析;(2)画图见解析;(3)20
【解析】
【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;
(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;
(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.
【详解】(1)如图所示;
(2)如图所示;
(3)结合网格特点易得四边形AA1 B1 A2是正方形,
AA1=,
所以四边形AA1 B1 A2的面积为:=20,
故答案为20.
【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.
19、答案见解析
【解析】
根据轴对称的性质作出线段AC的垂直平分线即可得.
【详解】
如图所示,直线EF即为所求.
【点睛】
本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质和线段中垂线的尺规作图.
20、解:(1);(2);(3)n=17.
【解析】
(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.
【详解】
(1)原式=1−+−+−+−+−=1−=.
故答案为;
(2)原式=1−+−+−+…+−=1−=
故答案为;
(3) +++…+
= (1−+−+−+…+−)
=(1−)
=
=
解得:n=17.
考点:规律题.
21、通信塔CD的高度约为15.9cm.
【解析】
过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.
【详解】
过点A作AE⊥CD于E,
则四边形ABDE是矩形,
设CE=xcm,
在Rt△AEC中,∠AEC=90°,∠CAE=30°,
所以AE=xcm,
在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,
DM=cm,
在Rt△ABM中,BM=cm,
∵AE=BD,
∴,
解得:x=+3,
∴CD=CE+ED=+9≈15.9(cm),
答:通信塔CD的高度约为15.9cm.
【点睛】
本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.
22、(1)证明见解析(2)13
【解析】
(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;
(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.
【详解】
(1)∵△ACB和△ECD都是等腰直角三角形
∴AC=BC,EC=DC,∠ACB=∠ECD=90°
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA
∴∠ACE=∠BCD
∴△ACE≌△BCD(SAS);
(2)∵△ACB和△ECD都是等腰直角三角形
∴∠BAC=∠B=45°
∵△ACE≌△BCD
∴AE=BD=12,∠EAC=∠B=45°
∴∠EAD=∠EAC+∠BAC=90°,
∴△EAD是直角三角形
【点睛】
解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.
23、2.4元/米
【解析】
利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.
【详解】
解:设去年用水的价格每立方米元,则今年用水价格为每立方米元
由题意列方程得:
解得
经检验,是原方程的解
(元/立方米)
答:今年居民用水的价格为每立方米元.
【点睛】
此题主要考查了分式方程的应用,正确表示出用水量是解题关键.
24、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.
【解析】
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
【详解】
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
根据题意得:18x+12(20﹣x)=300,
解得:x=10,
则20﹣x=20﹣10=10,
则甲、乙两种型号的产品分别为10万只,10万只;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
根据题意得:13y+8.8(20﹣y)≤239,
解得:y≤15,
根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
当y=15时,W最大,最大值为91万元.
所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.
考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.
2021-2022学年湖北省武汉市武昌区南湖中学八年级(上)月考数学试卷(9月份): 这是一份2021-2022学年湖北省武汉市武昌区南湖中学八年级(上)月考数学试卷(9月份),共27页。试卷主要包含了选择题,解下列各题等内容,欢迎下载使用。
2022年湖北省武汉市武昌区北片重点中学中考联考数学试题含解析: 这是一份2022年湖北省武汉市武昌区北片重点中学中考联考数学试题含解析,共22页。
2022年湖北省武汉市南湖区重点中学中考数学考试模拟冲刺卷含解析: 这是一份2022年湖北省武汉市南湖区重点中学中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,若关于x的一元二次方程等内容,欢迎下载使用。