2022年云南省易门县重点达标名校中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,右侧立体图形的俯视图是( )
A. B. C. D.
2.关于的不等式的解集如图所示,则的取值是
A.0 B. C. D.
3.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为
A. B.3 C.1 D.
4.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )
A. B.
C. D.
5.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )
A.32,31 B.31,32 C.31,31 D.32,35
6.下列说法正确的是( )
A.负数没有倒数 B.﹣1的倒数是﹣1
C.任何有理数都有倒数 D.正数的倒数比自身小
7.已知点M、N在以AB为直径的圆O上,∠MON=x°,∠MAN= y°, 则点(x,y)一定在( )
A.抛物线上 B.过原点的直线上 C.双曲线上 D.以上说法都不对
8.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为( )
A. B. C. D.
9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为( )
A.﹣12 B.﹣32 C.32 D.﹣36
10.如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )
A. B. C. D.
11.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,则t的值为( )
A.﹣3或7 B.﹣4或6 C.﹣4或7 D.﹣3或6
12.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )
A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.因式分解:16a3﹣4a=_____.
14.如图Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中点,P是直线BC上一点,把△BDP沿PD所在直线翻折后,点B落在点Q处,如果QD⊥BC,那么点P和点B间的距离等于____.
15.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=_____.
16.若代数式有意义,则实数x的取值范围是____.
17.不等式组的解集为,则的取值范围为_____.
18.实数,﹣3,,,0中的无理数是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.判断直线MN与⊙O的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.
20.(6分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出的球上的数字和为偶数的概率.
21.(6分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.
(1)求证:DF⊥AC;
(2)求tan∠E的值.
22.(8分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.
23.(8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天)
1
2
3
10
…
日销售量(n件)
198
196
194
?
…
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天)
1≤x<50
50≤x≤90
销售价格(元/件)
x+60
100
(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
24.(10分)按要求化简:(a﹣1)÷,并选择你喜欢的整数a,b代入求值.
小聪计算这一题的过程如下:
解:原式=(a﹣1)÷…①
=(a﹣1)•…②
=…③
当a=1,b=1时,原式=…④
以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;
还有第_____步出错(填序号),原因:_____.
请你写出此题的正确解答过程.
25.(10分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.
求证:BG=FG;若AD=DC=2,求AB的长.
26.(12分)已知关于x的方程.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
27.(12分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.
(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.
解决问题:
①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;
②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.
考点:简单组合体的三视图.
2、D
【解析】
首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以=-1,解出即可;
【详解】
解:不等式,
解得x<,
由数轴可知,
所以,
解得;
故选:.
【点睛】
本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
3、A
【解析】
首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可
【详解】
∵AB=3,AD=4,∴DC=3
∴根据勾股定理得AC=5
根据折叠可得:△DEC≌△D′EC,
∴D′C=DC=3,DE=D′E
设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,
解得:x=
故选A.
4、C
【解析】
试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.
考点:由实际问题抽象出分式方程.
5、C
【解析】
分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.
故选C.
6、B
【解析】
根据倒数的定义解答即可.
【详解】
A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.
【点睛】
本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.
7、B
【解析】
由圆周角定理得出∠MON与∠MAN的关系,从而得出x与y的关系式,进而可得出答案.
【详解】
∵∠MON与∠MAN分别是弧MN所对的圆心角与圆周角,
∴∠MAN=∠MON,
∴ ,
∴点(x,y)一定在过原点的直线上.
故选B.
【点睛】
本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.
8、D
【解析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.
点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.
9、B
【解析】
解:
∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,
∴OA=5,AB∥OC,
∴点B的坐标为(8,﹣4),
∵函数y=(k<0)的图象经过点B,
∴﹣4=,得k=﹣32.
故选B.
【点睛】
本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.
10、A
【解析】
先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;
【详解】
解:∵∠C=90°,AC=4,BC=3,
∴AB=5,
∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,
∴AE=AC=4,DE=BC=3,
∴BE=AB-AE=5-4=1,
在Rt△DBE中,BD=,
故选A.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
11、C
【解析】
由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 >2或t<1两种情况进行求解即可.
【详解】
解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.
故选择C.
【点睛】
本题考查了平面直角坐标系的内容,理解题意是解题关键.
12、A
【解析】
根据中位数,众数,平均数,方差等知识即可判断;
【详解】
观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.
故选A.
【点睛】
本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、4a(2a+1)(2a﹣1)
【解析】
首先提取公因式,再利用平方差公式分解即可.
【详解】
原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),
故答案为4a(2a+1)(2a﹣1)
【点睛】
本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
14、2.1或2
【解析】
在Rt△ACB中,根据勾股定理可求AB的长,根据折叠的性质可得QD=BD,QP=BP,根据三角形中位线定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根据勾股定理可求QP,继而可求得答案.
【详解】
如图所示:
在Rt△ACB中,∠C=90°,AC=6,BC=8,
AB==2,
由折叠的性质可得QD=BD,QP=BP,
又∵QD⊥BC,
∴DQ∥AC,
∵D是AB的中点,
∴DE=AC=3,BD=AB=1,BE=BC=4,
①当点P在DE右侧时,
∴QE=1-3=2,
在Rt△QEP中,QP2=(4-BP)2+QE2,
即QP2=(4-QP)2+22,
解得QP=2.1,
则BP=2.1.
②当点P在DE左侧时,同①知,BP=2
故答案为:2.1或2.
【点睛】
考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.
15、6°
【解析】
∠B=48°,∠ACB=90°,所以∠A=42°,DC是中线,所以∠BCD=∠B=48°,
∠DCA=∠A=48°,因为∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.
16、x≠﹣5.
【解析】
根据分母不为零分式有意义,可得答案.
【详解】
由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.
【点睛】
本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.
17、k≥1
【解析】
解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.
故答案为k≥1.
18、
【解析】
无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.
【详解】
解:=4,是有理数,﹣3、、0都是有理数,
是无理数.
故答案为:.
【点睛】
本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)相切;(2).
【解析】
试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.
试题解析:(1)MN是⊙O切线.
理由:连接OC.
∵OA=OC,
∴∠OAC=∠OCA,
∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,
∴∠BCM=∠BOC,
∵∠B=90°,
∴∠BOC+∠BCO=90°,
∴∠BCM+∠BCO=90°,
∴OC⊥MN,
∴MN是⊙O切线.
(2)由(1)可知∠BOC=∠BCM=60°,
∴∠AOC=120°,
在RT△BCO中,OC=OA=4,∠BCO=30°,
∴BO=OC=2,BC=2
∴S阴=S扇形OAC﹣S△OAC=.
考点:直线与圆的位置关系;扇形面积的计算.
20、(1)画树状图得:
则共有9种等可能的结果;
(2)两次摸出的球上的数字和为偶数的概率为:.
【解析】
试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.
试题解析:(1)画树状图得:
则共有9种等可能的结果;
(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,
∴两次摸出的球上的数字和为偶数的概率为:.
考点:列表法与树状图法.
21、(1)证明见解析;(2)tan∠CBG=.
【解析】
(1)连接OD,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;
(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.
【详解】
解:(1)证明:连接OD,CD,
∵BC是⊙O的直径,
∴∠BDC=90°,
∴CD⊥AB,
∵AC=BC,
∴AD=BD,
∵OB=OC,
∴OD是△ABC的中位线
∴OD∥AC,
∵DF为⊙O的切线,
∴OD⊥DF,
∴DF⊥AC;
(2)解:如图,连接BG,
∵BC是⊙O的直径,
∴∠BGC=90°,
∵∠EFC=90°=∠BGC,
∴EF∥BG,
∴∠CBG=∠E,
Rt△BDC中,∵BD=3,BC=5,
∴CD=4,
∵S△ABC=,即6×4=5BG,
∴BG=,
由勾股定理得:CG=,
∴tan∠CBG=tan∠E=.
【点睛】
本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点.
22、证明见解析.
【解析】
试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.
试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.
∵M是BC的中点,∴BM=CM.
在△BDM和△CEM中,∵,
∴△BDM≌△CEM(SAS).∴MD=ME.
考点:1.等腰三角形的性质;2.全等三角形的判定与性质.
23、(1)1件;(2)第40天,利润最大7200元;(3)46天
【解析】
试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;
(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;
(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.
试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,
所以n关于x的一次函数表达式为n=-2x+200;
当x=10时,n=-2×10+200=1.
(2)设销售该产品每天利润为y元,y关于x的函数表达式为:
当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,
∵-2<0,∴当x=40时,y有最大值,最大值是7200;
当50≤x≤90时,y=-120x+12000,
∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
(3)在该产品销售的过程中,共有46天销售利润不低于5400元.
24、①, 运算顺序错误; ④, a等于1时,原式无意义.
【解析】
由于乘法和除法是同级运算,应当按照从左向右的顺序计算,①运算顺序错误;④当a=1时,等于0,原式无意义.
【详解】
①运算顺序错误;
故答案为①,运算顺序错误;
④当a=1时,等于0,原式无意义.
故答案为a等于1时,原式无意义.
当时,原式
【点睛】
本题考查了分式的化简求值,注意运算顺序和分式有意义的条件.
25、(1)证明见解析;(2)AB=
【解析】
(1)证明:∵,DE⊥AC于点F,
∴∠ABC=∠AFE.
∵AC=AE,∠EAF=∠CAB,
∴△ABC≌△AFE
∴AB=AF.
连接AG,
∵AG=AG,AB=AF
∴Rt△ABG≌Rt△AFG
∴BG=FG
(2)解:∵AD=DC,DF⊥AC
∴
∴∠E=30°
∴∠FAD=∠E=30°
∴AB=AF=
26、(1),;(2)证明见解析.
【解析】
试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
试题解析:(1)设方程的另一根为x1,
∵该方程的一个根为1,∴.解得.
∴a的值为,该方程的另一根为.
(2)∵,
∴不论a取何实数,该方程都有两个不相等的实数根.
考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
27、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值
【详解】
解:(1)将A,B点坐标代入,得
,
解得,
抛物线的解析式为y=;
(2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得
2m=﹣1,
即m=﹣;
故答案为﹣;
②AB的解析式为
当PA⊥AB时,PA的解析式为y=﹣2x﹣2,
联立PA与抛物线,得,
解得(舍),,
即P(6,﹣14);
当PB⊥AB时,PB的解析式为y=﹣2x+3,
联立PB与抛物线,得,
解得(舍),
即P(4,﹣5),
综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);
(3)如图:
,
∵M(t,﹣t2+t+1),Q(t, t+),
∴MQ=﹣t2+
S△MAB=MQ|xB﹣xA|
=(﹣t2+)×2
=﹣t2+,
当t=0时,S取最大值,即M(0,1).
由勾股定理,得
AB==,
设M到AB的距离为h,由三角形的面积,得
h==.
点M到直线AB的距离的最大值是.
【点睛】
本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键
2022年云南省玉溪市易门县重点名校中考四模数学试题含解析: 这是一份2022年云南省玉溪市易门县重点名校中考四模数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022年江苏省大丰市重点达标名校中考试题猜想数学试卷含解析: 这是一份2022年江苏省大丰市重点达标名校中考试题猜想数学试卷含解析,共19页。试卷主要包含了估计5﹣的值应在等内容,欢迎下载使用。
2022届江苏省连云港重点达标名校中考试题猜想数学试卷含解析: 这是一份2022届江苏省连云港重点达标名校中考试题猜想数学试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,关于x的正比例函数,y=,的倒数是等内容,欢迎下载使用。