开学活动
搜索
    上传资料 赚现金

    2022年浙江省宁波市宁波华茂国际校中考数学猜题卷含解析

    2022年浙江省宁波市宁波华茂国际校中考数学猜题卷含解析第1页
    2022年浙江省宁波市宁波华茂国际校中考数学猜题卷含解析第2页
    2022年浙江省宁波市宁波华茂国际校中考数学猜题卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省宁波市宁波华茂国际校中考数学猜题卷含解析

    展开

    这是一份2022年浙江省宁波市宁波华茂国际校中考数学猜题卷含解析,共21页。试卷主要包含了下列计算正确的是,在平面直角坐标系中,点等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是(  )

    A.7 B.10 C.11 D.12
    2.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为(  )DC=3OG;(2)OG= BC;(3)△OGE是等边三角形;(4).

    A.1 B.2 C.3 D.4
    3.下列计算正确的是( )
    A.a²+a²=a4 B.(-a2)3=a6
    C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b
    4.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )
    A.20 B.30 C.40 D.50
    5.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )
    A.a=2,b=3 B.a=-2,b=-3
    C.a=-2,b=3 D.a=2,b=-3
    6.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为  
    A. B.
    C. D.
    7.在下列各平面图形中,是圆锥的表面展开图的是( )
    A. B. C. D.
    8.在平面直角坐标系中,点(-1,-2)所在的象限是(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    9.下列计算正确的是(  )
    A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1
    C.2x2÷3x2=x2 D.2x2•3x2=6x4
    10.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )

    A.线段EF的长逐渐增长 B.线段EF的长逐渐减小
    C.线段EF的长始终不变 D.线段EF的长与点P的位置有关
    11.实数a、b在数轴上的对应点的位置如图所示,则正确的结论是(  )

    A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<0
    12.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是(  )
    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.一个不透明的口袋中有2个红球,1个黄球,1个白球,每个球除颜色不同外其余均相同.小溪同学从口袋中随机取出两个小球,则小溪同学取出的是一个红球、一个白球的概率为_____.
    14.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).
    15.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.
    16.已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+= .
    17.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.

    18.已知方程的一个根为1,则的值为__________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.
    (1)求点C与点A的距离(精确到1km);
    (2)确定点C相对于点A的方向.
    (参考数据:)

    20.(6分)某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,,

    21.(6分)如图,矩形ABCD绕点C顺时针旋转90°后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;
    (1)求证:AM=FM;
    (2)若∠AMD=a.求证:=cosα.

    22.(8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:

    通过这段对话,请你求出该地驻军原来每天加固的米数.
    23.(8分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,
    教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).
    求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).
    24.(10分)如图,内接于,,的延长线交于点.

    (1)求证:平分;
    (2)若,,求和的长.
    25.(10分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.

    26.(12分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
    此次抽样调查中,共调查了 名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.
    27.(12分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是   事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=4,CD=AB=6,
    ∵由作法可知,直线MN是线段AC的垂直平分线,
    ∴AE=CE,
    ∴AE+DE=CE+DE=AD,
    ∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.
    故选B.
    2、C
    【解析】
    ∵EF⊥AC,点G是AE中点,
    ∴OG=AG=GE=AE,
    ∵∠AOG=30°,
    ∴∠OAG=∠AOG=30°,
    ∠GOE=90°-∠AOG=90°-30°=60°,
    ∴△OGE是等边三角形,故(3)正确;
    设AE=2a,则OE=OG=a,
    由勾股定理得,AO=,
    ∵O为AC中点,
    ∴AC=2AO=2,
    ∴BC=AC=,
    在Rt△ABC中,由勾股定理得,AB==3a,
    ∵四边形ABCD是矩形,
    ∴CD=AB=3a,
    ∴DC=3OG,故(1)正确;
    ∵OG=a,BC=,
    ∴OG≠BC,故(2)错误;
    ∵S△AOE=a•=,
    SABCD=3a•=32,
    ∴S△AOE=SABCD,故(4)正确;
    综上所述,结论正确是(1)(3)(4)共3个,
    故选C.
    【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.
    3、D
    【解析】
    各项计算得到结果,即可作出判断.
    【详解】
    A、原式=2a2,不符合题意;
    B、原式=-a6,不符合题意;
    C、原式=a2+2ab+b2,不符合题意;
    D、原式=-4b,符合题意,
    故选:D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    4、A
    【解析】
    分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.
    详解:根据题意得: , 
    计算得出:n=20, 
    故选A.
    点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    5、B
    【解析】
    分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.
    详解:(x+1)(x-3)
    =x2-3x+x-3
    =x2-2x-3
    所以a=2,b=-3,
    故选B.
    点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
    6、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    7、C
    【解析】
    结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.
    【详解】
    解:圆锥的展开图是由一个扇形和一个圆形组成的图形.
    故选C.
    【点睛】
    考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.
    8、C
    【解析】
    :∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C
    9、D
    【解析】
    先利用合并同类项法则,单项式除以单项式,以及单项式乘以单项式法则计算即可得到结果.
    【详解】
    A、2x2+3x2=5x2,不符合题意;
    B、2x2﹣3x2=﹣x2,不符合题意;
    C、2x2÷3x2=,不符合题意;
    D、2x23x2=6x4,符合题意,
    故选:D.
    【点睛】
    本题主要考查了合并同类项法则,单项式除以单项式,单项式乘以单项式法则,正确掌握运算法则是解题关键.
    10、C
    【解析】
    试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,
    故选C.

    考点:1、矩形性质,2、勾股定理,3、三角形的中位线
    11、C
    【解析】
    直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案.
    【详解】
    选项A,从数轴上看出,a在﹣1与0之间,
    ∴﹣1<a<0,
    故选项A不合题意;
    选项B,从数轴上看出,a在原点左侧,b在原点右侧,
    ∴a<0,b>0,
    ∴ab<0,
    故选项B不合题意;
    选项C,从数轴上看出,a在b的左侧,
    ∴a<b,
    即a﹣b<0,
    故选项C符合题意;
    选项D,从数轴上看出,a在﹣1与0之间,
    ∴1<b<2,
    ∴|a|<|b|,
    ∵a<0,b>0,
    所以a+b=|b|﹣|a|>0,
    故选项D不合题意.
    故选:C.
    【点睛】
    本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.
    12、B
    【解析】
    首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,
    【详解】
    设学校购买文学类图书平均每本书的价格是x元,可得:
    故选B.
    【点睛】
    此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    先画树状图求出所有等可能的结果数,再找出从口袋中随机摸出2个球,摸到的两个球是一红一白的结果数,然后根据概率公式求解.
    【详解】
    解:根据题意画树状图如下:

    共有12种等可能的结果数,其中从口袋中随机摸出2个球,摸到的一个红球、一个白球的结果数为4,
    所以从口袋中随机摸出2个球,则摸到的两个球是一白一黄的概率为.
    故答案为.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    14、①③④
    【解析】
    分析:根据两个向量垂直的判定方法一一判断即可;
    详解:①∵2×(−1)+1×2=0,
    ∴与垂直;
    ②∵
    ∴与不垂直.
    ③∵
    ∴与垂直.
    ④∵
    ∴与垂直.
    故答案为:①③④.
    点睛:考查平面向量,解题的关键是掌握向量垂直的定义.
    15、1
    【解析】
    分析:设方程的另一个根为m,根据两根之和等于-,即可得出关于m的一元一次方程,解之即可得出结论.
    详解:设方程的另一个根为m,
    根据题意得:1+m=3,
    解得:m=1.
    故答案为1.
    点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.
    16、1
    【解析】
    试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即﹣mn+=﹣3mn=16+9=1.
    故答案为1.
    考点:根与系数的关系.
    17、3
    【解析】
    试题分析:如图,∵CD∥AB∥MN,
    ∴△ABE∽△CDE,△ABF∽△MNF,
    ∴,
    即,
    解得:AB=3m,
    答:路灯的高为3m.

    考点:中心投影.
    18、1
    【解析】
    欲求m,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m值.
    【详解】
    设方程的另一根为x1,又∵x=1,
    ∴,
    解得m=1.
    故答案为1.
    【点睛】
    本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题.此题也可将x=1直接代入方程3x2-9x+m=0中求出m的值.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)173;(2)点C位于点A的南偏东75°方向.
    【解析】
    试题分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.
    (2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.
    试题解析:解:(1)如答图,过点A作AD⊥BC于点D.
    由图得,∠ABC=75°﹣10°=60°.
    在Rt△ABD中,∵∠ABC=60°,AB=100,
    ∴BD=50,AD=50.
    ∴CD=BC﹣BD=200﹣50=1.
    在Rt△ACD中,由勾股定理得:
    AC=(km).
    答:点C与点A的距离约为173km.
    (2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,
    ∴AB2+AC2=BC2. ∴∠BAC=90°.
    ∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.
    答:点C位于点A的南偏东75°方向.

    考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理.
    20、14.2米;
    【解析】
    Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得.
    【详解】
    设米
    ∵∠C=45°
    在中,米,

     又米,
    在中
    Tan∠ADB= ,
    Tan60°=
    解得
    答,建筑物的高度为米.
    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.
    21、(1)见解析;(2)见解析.
    【解析】
    (1)由旋转性质可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,则HF=FG=AD,所以可证△ADM≌△MHF,结论可得.
    (2)作FN⊥DG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cosα=cos∠FMG=,代入可证结论成立
    【详解】
    (1)由旋转性质可知:
    CD=CG且∠DCG=90°,
    ∴∠DGC=45°从而∠DGF=45°,
    ∵∠EFG=90°,
    ∴HF=FG=AD
    又由旋转可知,AD∥EF,
    ∴∠DAM=∠HFM,
    又∵∠DMA=∠HMF,
    ∴△ADM≌△FHM
    ∴AM=FM
    (2)作FN⊥DG垂足为N

    ∵△ADM≌△MFH
    ∴DM=MH,AM=MF=AF
    ∵FH=FG,FN⊥HG
    ∴HN=NG
    ∵DG=DM+HM+HN+NG=2(MH+HN)
    ∴MN=DG
    ∵cos∠FMG=
    ∴cos∠AMD=
    ∴=cosα
    【点睛】
    本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形.
    22、300米
    【解析】
    解:设原来每天加固x米,根据题意,得

    去分母,得 1200+4200=18x(或18x=5400)
    解得.
    检验:当时,(或分母不等于0).
    ∴是原方程的解.
    答:该地驻军原来每天加固300米.
    23、(1)2m(2)27m
    【解析】
    (1)首先构造直角三角形△AEM,利用,求出即可.
    (2)利用Rt△AME中,,求出AE即可.
    【详解】
    解:(1)过点E作EM⊥AB,垂足为M.

    设AB为x.
    在Rt△ABF中,∠AFB=45°,
    ∴BF=AB=x,
    ∴BC=BF+FC=x+1.
    在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,
    又∵,∴,解得:x≈2.
    ∴教学楼的高2m.
    (2)由(1)可得ME=BC=x+1≈2+1=3.
    在Rt△AME中,,
    ∴AE=MEcos22°≈.
    ∴A、E之间的距离约为27m.
    24、 (1)证明见解析;(2)AC= , CD= ,
    【解析】
    分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.
    本题解析:
    解:(1)证明:延长AO交BC于H,连接BO.
    ∵AB=AC,OB=OC,
    ∴A,O在线段BC的垂直平分线上.∴AO⊥BC.
    又∵AB=AC,∴AO平分∠BAC.

    (2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.
    ∴∠EBC=90°,BC⊥BE.
    ∵∠E=∠BAC,∴sinE=sin∠BAC.
    ∴=.∴CE=BC=10.
    ∴BE==8,OA=OE=CE=5.
    ∵AH⊥BC,∴BE∥OA.
    ∴=,即=,
    解得OD=.∴CD=5+=.
    ∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.
    ∴OH=BE=4,CH=BC=3.∴AH=5+4=9.
    在Rt△ACH中,AC===3.

    点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.
    25、(1)CD=BE,理由见解析;(1)证明见解析.
    【解析】
    (1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;
    (1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.
    【详解】
    解:(1)CD=BE,理由如下:
    ∵△ABC和△ADE为等腰三角形,
    ∴AB=AC,AD=AE,
    ∵∠EAD=∠BAC,
    ∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
    即∠EAB=∠CAD,
    在△EAB与△CAD中,
    ∴△EAB≌△CAD,
    ∴BE=CD;
    (1)∵∠BAC=90°,
    ∴△ABC和△ADE都是等腰直角三角形,
    ∴∠ABF=∠C=45°,
    ∵△EAB≌△CAD,
    ∴∠EBA=∠C,
    ∴∠EBA=45°,
    ∴∠EBF=90°,
    在Rt△BFE中,BF1+BE1=EF1,
    ∵AF平分DE,AE=AD,
    ∴AF垂直平分DE,
    ∴EF=FD,
    由(1)可知,BE=CD,
    ∴BF1+CD1=FD1.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.
    26、(1)200,(2)图见试题解析 (3)540
    【解析】
    试题分析:(1)根据A级的人数与所占的百分比列式进行计算即可求出被调查的学生人数;
    (2)根据总人数求出C级的人数,然后补全条形统计图即可;
    (3)1减去A、B两级所占的百分比乘以360°即可得出结论.
    试题解析::(1)调查的学生人数为:=200名;
    (2)C级学生人数为:200-50-120=30名,
    补全统计图如图;

    (3)学习态度达标的人数为:360×[1-(25%+60%]=54°.
    答:求出图②中C级所占的圆心角的度数为54°.
    考点:条形统计图和扇形统计图的综合运用
    27、(1)不可能;(2).
    【解析】
    (1)利用确定事件和随机事件的定义进行判断;
    (2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
    【详解】
    (1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
    故答案为不可能;
    (2)画树状图:

    共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
    所以某顾客该天早餐刚好得到菜包和油条的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.

    相关试卷

    2023-2024学年浙江省宁波市宁波华茂国际学校数学九上期末统考试题含答案:

    这是一份2023-2024学年浙江省宁波市宁波华茂国际学校数学九上期末统考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,关于的方程的根的情况,正确的是等内容,欢迎下载使用。

    浙江省宁波市宁波华茂国际学校2022-2023学年七下数学期末经典试题含答案:

    这是一份浙江省宁波市宁波华茂国际学校2022-2023学年七下数学期末经典试题含答案,共6页。试卷主要包含了若成立,则下列不等式成立的是等内容,欢迎下载使用。

    浙江省宁波市国际校2022年中考联考数学试题含解析:

    这是一份浙江省宁波市国际校2022年中考联考数学试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是,如图,将一正方形纸片沿图,《九章算术》中有这样一个问题,有一组数据等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map