2022年蒙古准格尔旗重点名校中考数学对点突破模拟试卷含解析
展开1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.计算3–(–9)的结果是( )
A.12B.–12C.6D.–6
2.如图所示的两个四边形相似,则α的度数是( )
A.60°B.75°C.87°D.120°
3.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(﹣2,1)B.(﹣8,4)
C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)
4.的值等于( )
A.B.C.D.
5.如图,直线被直线所截,,下列条件中能判定的是( )
A.B.C.D.
6.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是( )
A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3
7.下列各式正确的是( )
A.B.
C.D.
8.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是( )
A.B.C.D.
9.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )
A.1B.C.D.
10.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是( )
A.0 B.3 C.﹣3 D.﹣7
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是_____.
12.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.
13.如果将抛物线平移,使平移后的抛物线顶点坐标为,那么所得新抛物线的表达式是__________.
14.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.
15.若关于x的方程(k﹣1)x2﹣4x﹣5=0有实数根,则k的取值范围是_____.
16.化简的结果是_______________.
三、解答题(共8题,共72分)
17.(8分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1).在图中以点O为位似中心在原点的另一侧画出△ABC放大1倍后得到的△A1B1C1,并写出A1的坐标;请在图中画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.
18.(8分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.
(1)求证:∠F=∠B;
(2)若AB=12,BG=10,求AF的长.
19.(8分)(1)计算:﹣14+sin61°+()﹣2﹣(π﹣)1.
(2)解不等式组,并把它的解集在数轴上表示出来.
20.(8分)如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分.(保留作图痕迹,不写作法)
21.(8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.
22.(10分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.
(1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;
(2)当直线l与AD边有公共点时,求t的取值范围.
23.(12分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.
请你根据图中信息,回答下列问题:
(1)求本次调查的学生人数,并补全条形统计图;
(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;
(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
24.如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.
(1)若,DC=4,求AB的长;
(2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据有理数的减法,即可解答.
【详解】
故选A.
【点睛】
本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相
反数.
2、C
【解析】
【分析】根据相似多边形性质:对应角相等.
【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫
故选C
【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.
3、D
【解析】
根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.
【详解】
∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,
∴点A的对应点A′的坐标是:(-2,1)或(2,-1).
故选D.
【点睛】
此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.
4、C
【解析】
试题解析:根据特殊角的三角函数值,可知:
故选C.
5、C
【解析】
试题解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;
D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
故选C.
6、A
【解析】
作出反比例函数的图象(如图),即可作出判断:
∵-3<1,
∴反比例函数的图象在二、四象限,y随x的增大而增大,且当x<1时,y>1;当x>1时,y<1.
∴当x1<x2<1<x3时,y3<y1<y2.故选A.
7、A
【解析】
∵,则B错;,则C;,则D错,故选A.
8、C
【解析】
解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,
可列方程得,
故选C.
【点睛】
本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.
9、C
【解析】
连接AE,OD,OE.
∵AB是直径, ∴∠AEB=90°.
又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.
∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.
又∵点E为BC的中点,∠AED=90°,∴AB=AC.
∴△ABC是等边三角形,
∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是.
∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.
∴阴影部分的面积=.故选C.
10、B
【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
∴y随x的增大而减小,
∴在0≤x≤5范围内,
x=0时,函数值最大﹣2×0+3=3,
故选B.
【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.
考点:概率.
12、-4
【解析】
:由反比例函数解析式可知:系数,
∵S△AOB=2即,∴;
又由双曲线在二、四象限k<0,∴k=-4
13、.
【解析】
平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.
【详解】
∵原抛物线解析式为y=1x1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x﹣1)1+1.
故答案为:y=1(x﹣1)1+1.
【点睛】
本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.
14、1.
【解析】
由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.
【详解】
∵BD⊥CD,BD=2,
∴S△BCD=BD•CD=2,
即CD=2.
∵C(2,0),
即OC=2,
∴OD=OC+CD=2+2=1,
∴B(1,2),代入反比例解析式得:k=10,
即y=,
则S△AOC=1.
故答案为1.
【点睛】
本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.
15、
【解析】
当k−1=0,即k=1时,原方程为−4x−5=0,
解得:x=−,
∴k=1符合题意;
当k−1≠0,即k≠1时,有,
解得:k⩾且k≠1.
综上可得:k的取值范围为k⩾.
故答案为k⩾.
16、
【解析】
先将分式进行通分,即可进行运算.
【详解】
=-=
【点睛】
此题主要考查分式的加减,解题的关键是先将它们通分.
三、解答题(共8题,共72分)
17、(1)A(﹣1,﹣6);(1)见解析
【解析】
试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.
试题解析:
解:(1)如图,△A1B1C1为所作,A(﹣1,﹣6);
(1)如图,△A1B1C1为所作.
18、(1)见解析;(2).
【解析】
(1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;
(2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.
【详解】
(1)证明:∵,
∴.
∴∠GAB=∠B,
∵AF是⊙O的切线,
∴AF⊥AO.
∴∠GAB+∠GAF=90°.
∵OE⊥AC,
∴∠F+∠GAF=90°.
∴∠F=∠GAB,
∴∠F=∠B;
(2)解:连接OG.
∵∠GAB=∠B,
∴AG=BG.
∵OA=OB=6,
∴OG⊥AB.
∴,
∵∠FAO=∠BOG=90°,∠F=∠B,
∴△FAO∽△BOG,
∴.
∴.
【点睛】
本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
19、(1)5;(2)﹣2≤x<﹣.
【解析】
(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;
(2)先求出两个不等式的解集,再找出解集的公共部分即可.
【详解】
(1)原式
=5;
(2)解不等式①得,x≥﹣2,
解不等式②得,
所以不等式组的解集是
用数轴表示为:
【点睛】
本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.
20、详见解析
【解析】
先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.
【详解】
如图
作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AE=AD,AD=BD,故AE=AB,而BE=AB,而△AEC与△CEB在AB边上的高相同,所以△CEB的面积是△AEC的面积的3倍,即S△AEC∶S△CEB=1∶3.
【点睛】
本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.
21、见解析
【解析】
解:不公平,理由如下:
列表得:
由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,
则甲获胜的概率为、乙获胜的概率为,
∵,
∴这个游戏对甲、乙双方不公平.
【点睛】
考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
22、 (1)点A在直线l上,理由见解析;(2)≤t≤4.
【解析】
(1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A在直线l上;
(2)当直线l经过点D时,设l的解析式代入数值解出即可
【详解】
(1)此时点A在直线l上.
∵BC=AB=2,点O为BC中点,
∴点B(-1,0),A(-1,2).
把点A的横坐标x=-1代入解析式y=2x+4,得
y=2,等于点A的纵坐标2,
∴此时点A在直线l上.
(2)由题意可得,点D(1,2),及点M(-2,0),
当直线l经过点D时,设l的解析式为y=kx+t(k≠0),
∴解得
由(1)知,当直线l经过点A时,t=4.
∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.
【点睛】
本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.
23、(1)共调查了50名学生;统计图见解析;(2)72°;(3).
【解析】
(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;
(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;
(3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.
【详解】
解:(1)14÷28%=50,
∴本次共调查了50名学生.
补全条形统计图如下.
(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为360°×=72°.
(3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下.
共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,
∴抽取的2名学生恰好来自同一个班级的概率P==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
24、(1);(2)30°
【解析】
(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;
(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.
【详解】
解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,
∴∠DEC=90°,AE=EC,
∵∠ABC=90°,∠C=∠C,
∴∠A=∠CDE,△ABC∽△DEC,
∴sin∠CDE=,AB:AC=DE:DC,
∵DC=4,
∴ED=3,
∴DE=,
∴AC=6,
∴AB:6=:4,
∴AB=;
(2)连接OE,
∵∠DEC=90°,
∴∠EDC+∠C=90°,
∵BE是⊙O的切线,
∴∠BEO=90°,
∴∠EOB+∠EBC=90°,
∵E是AC的中点,∠ABC=90°,
∴BE=EC,
∴∠EBC=∠C,
∴∠EOB=∠EDC,
又∵OE=OD,
∴△DOE是等边三角形,
∴∠EDC=60°,
∴∠C=30°.
【点睛】
考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.
1
2
3
2
1,2
2,2
3,2
3
1,3
2,3
3,3
4
1,4
2,4
3,4
内蒙古包头市东河区重点名校2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份内蒙古包头市东河区重点名校2021-2022学年中考数学对点突破模拟试卷含解析,共27页。试卷主要包含了如果一次函数y=kx+b,下列计算错误的是等内容,欢迎下载使用。
蒙古准格尔旗重点名校2021-2022学年中考三模数学试题含解析: 这是一份蒙古准格尔旗重点名校2021-2022学年中考三模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,如图,两个反比例函数y1=等内容,欢迎下载使用。
2022年宁波市南三县重点名校中考数学对点突破模拟试卷含解析: 这是一份2022年宁波市南三县重点名校中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。