年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2017-2021年湖南中考数学真题分类汇编之二次函数

    2017-2021年湖南中考数学真题分类汇编之二次函数第1页
    2017-2021年湖南中考数学真题分类汇编之二次函数第2页
    2017-2021年湖南中考数学真题分类汇编之二次函数第3页
    还剩36页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2017-2021年湖南中考数学真题分类汇编之二次函数

    展开

    这是一份2017-2021年湖南中考数学真题分类汇编之二次函数,共39页。
    2017-2021年湖南中考数学真题分类汇编之二次函数
    一.选择题(共12小题)
    1.(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是(  )
    A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
    2.(2019•益阳)下列函数中,y总随x的增大而减小的是(  )
    A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x2
    3.(2021•株洲)二次函数y=ax2+bx+c(a≠0)的图象如图所示,点P在x轴的正半轴上,且OP=1,设M=ac(a+b+c),则M的取值范围为(  )

    A.M<﹣1 B.﹣1<M<0 C.M<0 D.M>0
    4.(2018•益阳)已知二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是(  )

    A.ac<0 B.b<0 C.b2﹣4ac<0 D.a+b+c<0
    5.(2018•长沙)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P(  )
    A.有且只有1个 B.有且只有2个
    C.至少有3个 D.有无穷多个
    6.(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是(  )
    A. B.
    C. D.
    7.(2019•娄底)二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的是(  )
    ①abc<0
    ②b2﹣4ac<0
    ③2a>b
    ④(a+c)2<b2

    A.1个 B.2个 C.3个 D.4个
    8.(2020•长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为(  )

    A.3.50分钟 B.4.05分钟 C.3.75分钟 D.4.25分钟
    9.(2020•娄底)二次函数y=(x﹣a)(x﹣b)﹣2(a<b)与x轴的两个交点的横坐标分别为m和n,且m<n,下列结论正确的是(  )
    A.m<a<n<b B.a<m<b<n C.m<a<b<n D.a<m<n<b
    10.(2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是(  )
    A.c<﹣3 B.c<﹣2 C.c< D.c<1
    11.(2021•岳阳)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x﹣m)2﹣m与正方形OABC有交点时m的最大值和最小值分别是(  )

    A.4,﹣1 B.,﹣1 C.4,0 D.,﹣1
    12.(2020•湘西州)已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:
    ①abc>0,
    ②b﹣2a<0,
    ③a﹣b+c>0,
    ④a+b>n(an+b),(n≠1),
    ⑤2c<3b.
    正确的是(  )

    A.①③ B.②⑤ C.③④ D.④⑤
    二.填空题(共7小题)
    13.(2021•益阳)已知y是x的二次函数,如表给出了y与x的几对对应值:
    x

    ﹣2
    ﹣1
    0
    1
    2
    3
    4

    y

    11
    a
    3
    2
    3
    6
    11

    由此判断,表中a=   .
    14.(2017•衡阳)已知函数y=﹣(x﹣1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1   y2(填“<”、“>”或“=”)
    15.(2019•衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为    .

    16.(2019•常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是   .(填序号)
    17.(2017•永州)一小球从距地面1m高处自由落下,每次着地后又跳回到原高度的一半再落下.
    (1)小球第3次着地时,经过的总路程为   m;
    (2)小球第n次着地时,经过的总路程为   m.

    18.(2017•常德)如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为   .

    19.(2017•株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为   .

    三.解答题(共3小题)
    20.(2021•怀化)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如表:
    进货批次
    A型水杯(个)
    B型水杯(个)
    总费用(元)

    100
    200
    8000

    200
    300
    13000
    (1)求A、B两种型号的水杯进价各是多少元?
    (2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?
    (3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?
    21.(2021•郴州)将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.
    (1)求抛物线H的表达式;
    (2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;
    (3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.

    22.(2021•张家界)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0).
    (1)求二次函数的表达式;
    (2)求顶点A的坐标及直线AB的表达式;
    (3)判断△ABO的形状,试说明理由;
    (4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.


    2017-2021年湖南中考数学真题分类汇编之二次函数
    参考答案与试题解析
    一.选择题(共12小题)
    1.(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是(  )
    A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
    【考点】二次函数的性质. 版权所有
    【专题】常规题型;二次函数图象及其性质.
    【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.
    【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),
    故选:C.
    【点评】本题考查了二次函数的性质,正确记忆y=a(x+h)2+k的顶点坐标是(﹣h,k)(a≠0)是关键.
    2.(2019•益阳)下列函数中,y总随x的增大而减小的是(  )
    A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x2
    【考点】二次函数的性质;一次函数的性质;正比例函数的性质. 版权所有
    【专题】一次函数及其应用;二次函数图象及其性质.
    【分析】根据各个选项中的函数解析式,可以得到y随x的增大如何变化,从而可以解答本题.
    【解答】解:y=4x中y随x的增大而增大,故选项A不符题意,
    y=﹣4x中y随x的增大而减小,故选项B符合题意,
    y=x﹣4中y随x的增大而增大,故选项C不符题意,
    y=x2中,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,故选项D不符合题意,
    故选:B.
    【点评】本题考查二次函数的性质、一次函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用一次函数和二次函数的性质解答.
    3.(2021•株洲)二次函数y=ax2+bx+c(a≠0)的图象如图所示,点P在x轴的正半轴上,且OP=1,设M=ac(a+b+c),则M的取值范围为(  )

    A.M<﹣1 B.﹣1<M<0 C.M<0 D.M>0
    【考点】二次函数图象与系数的关系. 版权所有
    【专题】函数思想;应用意识.
    【分析】法一:由图象得x=1时,y<0即a+b+c<0,当y=0时,得抛物线与x轴有两个交点,x1x2=<0,即可判断M的范围.
    法二:根据抛物线开口方向和与y轴交点位置确定a,c的取值范围,结合函数图象,当x=1时,函数值为负,求得a+b+c<0,从而求解.
    【解答】解:方法一:
    ∵OP=1,P不在抛物线上,
    ∴当抛物线y=ax2+bx+c(a≠0),
    x=1时,y=a+b+c<0,
    当抛物线y=0时,得ax2+bx+c=0,
    由图象知x1x2=<0,
    ∴ac<0,
    ∴ac(a+b+c)>0,
    即M>0,
    方法二:
    ∵抛物线开口向下,
    ∴a<0;
    ∵与y轴的交点在正半轴,
    ∴c>0;
    由图象观察知,当x=1时,函数值为负,
    即a+b+c<0,
    ∴M=ac(a+b+c)>0.
    故选:D.
    【点评】本题考查二次函数与系数的关系,解本题关键掌握二次函数的性质和根与系数的关系.
    4.(2018•益阳)已知二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是(  )

    A.ac<0 B.b<0 C.b2﹣4ac<0 D.a+b+c<0
    【考点】二次函数图象与系数的关系. 版权所有
    【专题】推理填空题.
    【分析】根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2﹣4ac,根据x=1时,y>0,确定a+b+c的符号.
    【解答】解:∵抛物线开口向上,
    ∴a>0,
    ∵抛物线交于y轴的正半轴,
    ∴c>0,
    ∴ac>0,A错误;
    ∵﹣>0,a>0,
    ∴b<0,∴B正确;
    ∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,C错误;
    当x=1时,y>0,
    ∴a+b+c>0,D错误;
    故选:B.
    【点评】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
    5.(2018•长沙)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P(  )
    A.有且只有1个 B.有且只有2个
    C.至少有3个 D.有无穷多个
    【考点】二次函数图象上点的坐标特征. 版权所有
    【专题】探究型.
    【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P的坐标,从而可以解答本题.
    【解答】解:∵对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),
    ∴x02﹣16≠a(x0﹣3)2+a(x0﹣3)﹣2a
    ∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)
    ∴(x0+4)≠a(x0﹣1)
    ∴x0=﹣4或x0=1,
    ∴点P的坐标为(﹣7,0)或(﹣2,﹣15)
    故选:B.
    【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
    6.(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是(  )
    A. B.
    C. D.
    【考点】二次函数的图象;一次函数的图象. 版权所有
    【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.
    【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;
    B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;
    C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;
    D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;
    故选:C.
    【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.
    7.(2019•娄底)二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的是(  )
    ①abc<0
    ②b2﹣4ac<0
    ③2a>b
    ④(a+c)2<b2

    A.1个 B.2个 C.3个 D.4个
    【考点】二次函数图象与系数的关系. 版权所有
    【专题】二次函数图象及其性质.
    【分析】由函数图象可知a<0,对称轴﹣1<x<0,图象与y轴的交点c>0,函数与x轴有两个不同的交点;即可得出b﹣2a>0,b<0;Δ=b2﹣4ac>0;再由图象可知当x=1时,y<0,即a+b+c<0;当x=﹣1时,y>0,即a﹣b+c>0;即可求解.
    【解答】解:由函数图象可知a<0,对称轴﹣1<x<0,图象与y轴的交点c>0,函数与x轴有两个不同的交点,
    ∴b﹣2a>0,b<0;
    Δ=b2﹣4ac>0;
    abc>0;
    当x=1时,y<0,即a+b+c<0;
    当x=﹣1时,y>0,即a﹣b+c>0;
    ∴(a+b+c)(a﹣b+c)<0,即(a+c)2<b2;
    ∴只有④是正确的;
    故选:A.
    【点评】本题考查二次函数的图象及性质;熟练掌握函数的图象及性质,能够通过图象获取信息,推导出a,b,c,△,对称轴的关系是解题的关键.
    8.(2020•长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为(  )

    A.3.50分钟 B.4.05分钟 C.3.75分钟 D.4.25分钟
    【考点】二次函数的应用. 版权所有
    【专题】应用题;二次函数的应用;运算能力;应用意识.
    【分析】将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p=at2+bt+c中,可得函数关系式为:p=﹣0.2t2+1.5t﹣1.9,再根据加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标,求出即可得结论.
    【解答】解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系P=at2+bt+c中,

    解得,
    所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9,
    由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:
    t=﹣=﹣=3.75,
    则当t=3.75分钟时,可以得到最佳时间.
    故选:C.
    【点评】本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.
    9.(2020•娄底)二次函数y=(x﹣a)(x﹣b)﹣2(a<b)与x轴的两个交点的横坐标分别为m和n,且m<n,下列结论正确的是(  )
    A.m<a<n<b B.a<m<b<n C.m<a<b<n D.a<m<n<b
    【考点】抛物线与x轴的交点. 版权所有
    【专题】二次函数图象及其性质;几何直观.
    【分析】依照题意画出二次函数y=(x﹣a)(x﹣b)及y=(x﹣a)(x﹣b)﹣2的大致图象,观察图象即可得出结论.
    【解答】解:二次函数y=(x﹣a)(x﹣b)与x轴交点的横坐标为a、b,将其图象往下平移2个单位长度可得出二次函数y=(x﹣a)(x﹣b)﹣2的图象,如图所示.
    观察图象,可知:m<a<b<n.
    故选:C.

    【点评】本题考查了抛物线与x轴的交点以及二次函数的图象,依照题意画出图象,利用数形结合解决问题是解题的关键.
    10.(2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是(  )
    A.c<﹣3 B.c<﹣2 C.c< D.c<1
    【考点】二次函数图象与系数的关系. 版权所有
    【专题】二次函数图象及其性质.
    【分析】由函数的不动点概念得出x1、x2是方程x2+2x+c=x的两个实数根,由x1<1<x2知Δ>0且x=1时y<0,据此得,解之可得.
    【解答】解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c=x的两个不相等实数根,
    且x1<1<x2,
    整理,得:x2+x+c=0,
    由x2+x+c=0有两个不相等的实数根,且x1<1<x2,知Δ>0,
    令y=x2+x+c,画出该二次函数的草图如下:

    则,
    解得c<﹣2,
    故选:B.
    【点评】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念,并据此得出关于c的不等式.
    11.(2021•岳阳)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x﹣m)2﹣m与正方形OABC有交点时m的最大值和最小值分别是(  )

    A.4,﹣1 B.,﹣1 C.4,0 D.,﹣1
    【考点】二次函数的性质;正方形的性质. 版权所有
    【专题】函数的综合应用;应用意识.
    【分析】画出图象,从图象可以看出,当函数图象从左上向右下运动时,当跟正方形有交点时,先经过点A,再逐渐经过点O,点B,点C,最后再经过点B,且在运动的过程中,两次经过点A,两次经过点O,点B和点C,只需算出当函数经过点A及点B时m的值,即可求出m的最大值及最小值.
    【解答】解:如图,由题意可得,互异二次函数y=(x﹣m)2﹣m的顶点(m,﹣m)在直线y=﹣x上运动,

    在正方形OABC中,点A(0,2),点C(2,0),
    ∴B(2,2),
    从图象可以看出,当函数图象从左上向右下运动时,若抛物线与正方形有交点,先经过点A,再逐渐经过点O,点B,点C,最后再经过点B,且在运动的过程中,两次经过点A,两次经过点O,点B和点C,
    ∴只需算出当函数经过点A及点B时m的值,即可求出m的最大值及最小值.
    当互异二次函数y=(x﹣m)2﹣m经过点A(0,2)时,m=2或m=﹣1;
    当互异二次函数y=(x﹣m)2﹣m经过点B(2,2)时,m=或m=.
    ∴互异二次函数y=(x﹣m)2﹣m与正方形OABC有交点时m的最大值和最小值分别是,﹣1.
    故选:D.
    【点评】本题为二次函数综合题,考查了二次函数图象性质.解答关键是研究动点到达临界点时图形的变化,从而得到临界值.
    12.(2020•湘西州)已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:
    ①abc>0,
    ②b﹣2a<0,
    ③a﹣b+c>0,
    ④a+b>n(an+b),(n≠1),
    ⑤2c<3b.
    正确的是(  )

    A.①③ B.②⑤ C.③④ D.④⑤
    【考点】二次函数图象与系数的关系. 版权所有
    【专题】数形结合;二次函数图象及其性质;几何直观.
    【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;
    ②由于a<0,所以﹣2a>0.
    又b>0,
    所以b﹣2a>0,
    故②错误;
    ③当x=﹣1时,y=a﹣b+c<0,故③错误;
    ④当x=1时,y的值最大.此时,y=a+b+c,
    而当x=n时,y=an2+bn+c,
    所以a+b+c>an2+bn+c,
    故a+b>an2+bn,即a+b>n(an+b),故④正确;
    ⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故⑤正确;
    故④⑤正确.
    故选:D.

    【点评】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点确定.
    二.填空题(共7小题)
    13.(2021•益阳)已知y是x的二次函数,如表给出了y与x的几对对应值:
    x

    ﹣2
    ﹣1
    0
    1
    2
    3
    4

    y

    11
    a
    3
    2
    3
    6
    11

    由此判断,表中a= 6 .
    【考点】二次函数图象上点的坐标特征. 版权所有
    【专题】二次函数图象及其性质;推理能力.
    【分析】确定二次函数的对称轴,利用二次函数的对称性即可求解.
    【解答】解:由上表可知函数图象经过点(0,3)和点(2,3),
    ∴对称轴为x==1,
    ∴x=﹣1时的函数值等于x=3时的函数值,
    ∵当x=3时,y=6,
    ∴当x=﹣1时,a=6.
    故答案为:6.
    【点评】本题考查了二次函数的图象的性质,利用表格找到二次函数的对称轴是解决此题的关键.
    14.(2017•衡阳)已知函数y=﹣(x﹣1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1 > y2(填“<”、“>”或“=”)
    【考点】二次函数图象上点的坐标特征. 版权所有
    【分析】先根据函数的解析式得出函数的对称轴是直线x=1,开口向下,再进行比较即可.
    【解答】解:∵函数y=﹣(x﹣1)2,
    ∴函数的对称轴是直线x=1,开口向下,
    ∵函数图象上两点A(2,y1),B(a,y2),a>2,
    ∴y1>y2,
    故答案为:>.
    【点评】本题考查了二次函数图象上点的坐标特征,能熟记二次函数的图象和性质内容是解此题的关键.
    15.(2019•衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为  (﹣1010,10102) .

    【考点】二次函数图象上点的坐标特征;二次函数的图象. 版权所有
    【专题】二次函数图象及其性质.
    【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.
    【解答】解:∵A点坐标为(1,1),
    ∴直线OA为y=x,A1(﹣1,1),
    ∵A1A2∥OA,
    ∴直线A1A2为y=x+2,
    解得或,
    ∴A2(2,4),
    ∴A3(﹣2,4),
    ∵A3A4∥OA,
    ∴直线A3A4为y=x+6,
    解得或,
    ∴A4(3,9),
    ∴A5(﹣3,9)
    …,
    ∴A2019(﹣1010,10102),
    故答案为(﹣1010,10102).
    【点评】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.
    16.(2019•常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是 ①④ .(填序号)
    【考点】二次函数的性质;二次函数图象上点的坐标特征;平行四边形的性质;菱形的判定与性质;正方形的性质. 版权所有
    【专题】新定义;二次函数图象及其性质;矩形 菱形 正方形.
    【分析】①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确;
    ②平行四边形有一组对边平行,没有一组邻边相等,②错误;
    ③由给出条件无法得到一组对边平行,③错误;
    ④设点P(m,m2),则Q(m,﹣1),由勾股定理可得PQ=MP=+1,MP=PQ和MN∥PQ,所以四边形PMNQ是广义菱形.④正确.
    【解答】解:①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确;
    ②平行四边形有一组对边平行,没有一组邻边相等,②错误;
    ③由给出条件无法得到一组对边平行,③错误;
    ④设点P(m,m2),则Q(m,﹣1),
    ∴MP==,PQ=+1,
    ∵点P在第一象限,
    ∴m>0,
    ∴MP=+1,
    ∴MP=PQ,
    又∵MN∥PQ,
    ∴四边形PMNQ是广义菱形.
    ④正确;
    故答案为①④.
    【点评】本题考查新定义,二次函数的性质,特殊四边形的性质;熟练掌握平行四边形,菱形,二次函数的图象及性质,将广义菱形的性质转化为已学知识是求解的关键.
    17.(2017•永州)一小球从距地面1m高处自由落下,每次着地后又跳回到原高度的一半再落下.
    (1)小球第3次着地时,经过的总路程为 2.5 m;
    (2)小球第n次着地时,经过的总路程为 3﹣()n﹣2 m.

    【考点】二次函数的应用. 版权所有
    【分析】(1)根据题意可以求得小球第3次着地时,经过的总路程;
    (2)根据题意可以求得小球第n次着地时,经过的总路程.
    【解答】解:(1)由题意可得,
    小球第3次着地时,经过的总路程为:1+=2.5(m),
    故答案为:2.5;
    (2)由题意可得,小球第n次着地时,经过的总路程为:1+2[]=3﹣()n﹣2,
    故答案为:3﹣()n﹣2.
    【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出题目中数的变化规律,注意每次着地后又跳回到原高度的一半再落下.
    18.(2017•常德)如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为 y=2x2﹣4x+4 .

    【考点】根据实际问题列二次函数关系式;正方形的性质. 版权所有
    【分析】由AAS证明△AHE≌△BEF,得出AE=BF=x,AH=BE=2﹣x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式.
    【解答】解:如图所示:

    ∵四边形ABCD是边长为2的正方形,
    ∴∠A=∠B=90°,AB=2.
    ∴∠1+∠2=90°,
    ∵四边形EFGH为正方形,
    ∴∠HEF=90°,EH=EF.
    ∴∠1+∠3=90°,
    ∴∠2=∠3,
    在△AHE与△BEF中,
    ∵,
    ∴△AHE≌△BEF(AAS),
    ∴AE=BF=x,AH=BE=2﹣x,
    在Rt△AHE中,由勾股定理得:
    EH2=AE2+AH2=x2+(2﹣x)2=2x2﹣4x+4;
    即y=2x2﹣4x+4(0<x<2),
    故答案为:y=2x2﹣4x+4.
    【点评】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y与x之间的函数关系式是解题的关键.
    19.(2017•株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为 ①④ .

    【考点】抛物线与x轴的交点;二次函数图象与系数的关系. 版权所有
    【分析】根据抛物线与y轴交于点B(0,﹣2),可得c=﹣2,依此判断③;由抛物线图象与x轴交于点A(﹣1,0),可得a﹣b﹣2=0,依此判断①②;由|a|=|b|可得二次函数y=ax2+bx+c的对称轴为x=,可得x2=2,比较大小即可判断④;从而求解.
    【解答】解:由A(﹣1,0),B(0,﹣2),得b=a﹣2,
    ∵开口向上,
    ∴a>0;
    ∵对称轴在y轴右侧,
    ∴﹣>0,
    ∴﹣>0,
    ∴a﹣2<0,
    ∴a<2;
    ∴0<a<2;
    ∴①正确;
    ∵抛物线与y轴交于点B(0,﹣2),
    ∴c=﹣2,故③错误;
    ∵抛物线图象与x轴交于点A(﹣1,0),
    ∴a﹣b﹣2=0,
    ∵0<a<2,
    ∴0<b+2<2,
    ﹣2<b<0,故②错误;
    ∵|a|=|b|,二次函数y=ax2+bx+c的对称轴在y轴的右侧,
    ∴二次函数y=ax2+bx+c的对称轴为x=,
    ∴x2=2>﹣1,故④正确.
    故答案为:①④.
    【点评】本题考查了抛物线与x轴的交点,二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.
    三.解答题(共3小题)
    20.(2021•怀化)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如表:
    进货批次
    A型水杯(个)
    B型水杯(个)
    总费用(元)

    100
    200
    8000

    200
    300
    13000
    (1)求A、B两种型号的水杯进价各是多少元?
    (2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?
    (3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?
    【考点】二次函数的应用;二元一次方程组的应用;一元二次方程的应用. 版权所有
    【专题】二次函数的应用;应用意识.
    【分析】(1)设A种型号的水杯进价为x元,B种型号的水杯进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)根据:利润=(每台实际售价﹣每台进价)×销售量,列函数关系式,配方成二次函数的顶点式可得函数的最大值;
    (3)设总利润为w元,购进A种水杯a个,根据总利润=单个利润×销售数量,即可得出w关于a的函数关系式,由w值与a值无关可得出b的值,再代入b值即可求出w的值.
    【解答】解:(1)设A种型号的水杯进价为x元,B种型号的水杯进价为y元,
    根据题意得:,
    解得:.
    答:A种型号的水杯进价为20元,B种型号的水杯进价为30元;
    (2)设超市应将B型水杯降价m元时,每天售出B型水杯的利润为W元,根据题意,
    得:W=(44﹣m﹣30)(20+5m)
    =﹣5m2+50m+280
    =﹣5(m﹣5)2+405,
    ∴当m=5时,W取得最大值,最大值为405元,
    答:超市应将B型水杯降价5元时,每天售出B型水杯的利润达到最大,最大利润为405元;
    (3)∵设总利润为w元,购进A种水杯a个,
    依题意,得:w=(10﹣b)a+9×=(10﹣6﹣b)a+3000,
    ∵捐款后所得的利润始终不变,
    ∴w值与a值无关,
    ∴10﹣6﹣b=0,解得:b=4,
    ∴w=(10﹣6﹣4)a+3000=3000,
    答:捐款后所得的利润始终不变,此时b为4元,利润为3000元.
    【点评】本题主要考查二元一次方程组及二次函数的实际应用,理解题意准确抓住相等关系,据此列出方程或函数关系式是解题的关键.
    21.(2021•郴州)将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.
    (1)求抛物线H的表达式;
    (2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;
    (3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.

    【考点】二次函数综合题. 版权所有
    【专题】代数几何综合题;压轴题;运算能力;推理能力;应用意识.
    【分析】(1)根据将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k,可得顶点坐标为(﹣1,4),即可得到抛物线H:y=a(x+1)2+4,运用待定系数法将点A的坐标代入,即可得出答案;
    (2)利用待定系数法可得直线AC的解析式为y=x+3,设P(m,﹣m2﹣2m+3),则E(m,m+3),进而得出PE=﹣(m+)2+,运用二次函数性质可得:当m=﹣时,PE有最大值,再证得△PEF是等腰直角三角形,即可求出答案;
    (3)分两种情形:①当AC为平行四边形的边时,则有PQ∥AC,且PQ=AC,如图2,过点P作对称轴的垂线,垂足为G,设AC交对称轴于点H,证得△PQG≌△ACO(AAS),根据点P到对称轴的距离为3,建立方程求解即可;
    ②当AC为平行四边形的对角线时,如图3,设AC的中点为M,则M(﹣,),设点P的横坐标为x,根据中点公式建立方程求解即可.
    【解答】解:(1)由题意得抛物线的顶点坐标为(﹣1,4),
    ∴抛物线H:y=a(x+1)2+4,
    将A(﹣3,0)代入,得:a(﹣3+1)2+4=0,
    解得:a=﹣1,
    ∴抛物线H的表达式为y=﹣(x+1)2+4;
    (2)如图1,由(1)知:y=﹣x2﹣2x+3,
    令x=0,得y=3,
    ∴C(0,3),
    设直线AC的解析式为y=mx+n,
    ∵A(﹣3,0),C(0,3),
    ∴,
    解得:,
    ∴直线AC的解析式为y=x+3,
    设P(m,﹣m2﹣2m+3),则E(m,m+3),
    ∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,
    ∵﹣1<0,
    ∴当m=﹣时,PE有最大值,
    ∵OA=OC=3,∠AOC=90°,
    ∴△AOC是等腰直角三角形,
    ∴∠ACO=45°,
    ∵PD⊥AB,
    ∴∠ADP=90°,
    ∴∠ADP=∠AOC,
    ∴PD∥OC,
    ∴∠PEF=∠ACO=45°,
    ∵PF⊥AC,
    ∴△PEF是等腰直角三角形,
    ∴PF=EF=PE,
    ∴S△PEF=PF•EF=PE2,
    ∴当m=﹣时,S△PEF最大值=×()2=;
    (3)①当AC为平行四边形的边时,则有PQ∥AC,且PQ=AC,
    如图2,过点P作对称轴的垂线,垂足为G,设AC交对称轴于点H,
    则∠AHG=∠ACO=∠PQG,
    在△PQG和△ACO中,

    ∴△PQG≌△ACO(AAS),
    ∴PG=AO=3,
    ∴点P到对称轴的距离为3,
    又∵y=﹣(x+1)2+4,
    ∴抛物线对称轴为直线x=﹣1,
    设点P(x,y),则|x+1|=3,
    解得:x=2或x=﹣4,
    当x=2时,y=﹣5,
    当x=﹣4时,y=﹣5,
    ∴点P坐标为(2,﹣5)或(﹣4,﹣5);
    ②当AC为平行四边形的对角线时,
    如图3,设AC的中点为M,
    ∵A(﹣3,0),C(0,3),
    ∴M(﹣,),
    ∵点Q在对称轴上,
    ∴点Q的横坐标为﹣1,设点P的横坐标为x,
    根据中点公式得:x+(﹣1)=2×(﹣)=﹣3,
    ∴x=﹣2,此时y=3,
    ∴P(﹣2,3);
    综上所述,点P的坐标为(2,﹣5)或(﹣4,﹣5)或(﹣2,3).



    【点评】本题是二次函数综合题,考查了待定系数法,二次函数的性质,等腰直角三角形性质,全等三角形判定和性质,平行四边形的判定与性质,三角形面积等,解题关键是熟练掌握二次函数性质、全等三角形判定和性质等相关知识,灵活运用方程思想、分类讨论思想.
    22.(2021•张家界)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0).
    (1)求二次函数的表达式;
    (2)求顶点A的坐标及直线AB的表达式;
    (3)判断△ABO的形状,试说明理由;
    (4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.

    【考点】二次函数综合题. 版权所有
    【专题】代数几何综合题;压轴题;动点型;推理能力.
    【分析】(1)运用待定系数法即可求出答案;
    (2)运用配方法将抛物线解析式化为顶点式,得出顶点坐标,运用待定系数法求出直线AB的函数表达式;
    (3)方法1:如图1,过点A作AF⊥OB于点F,则F(4,0),得出△AFO、△AFB均为等腰直角三角形,即可得出答案,
    方法2:由△ABO的三个顶点分别是O(0,0),A(4,﹣4),B(8,0),运用勾股定理及逆定理即可得出答案;
    (4)以O为圆心,2为半径作圆,则点P在圆周上,根据t=AP+PB=PD+PB,可知当B、P、D三点共线时,PD+PB取得最小值,过点D作DG⊥OB于点G,由t=DB=即可求出答案.
    【解答】解:(1)∵二次函数y=ax2+bx+c(a≠0)的图象经过C(2,﹣3),且与x轴交于原点及点B(8,0),
    ∴c=0,二次函数表达式可设为:y=ax2+bx(a≠0),
    将C(2,﹣3),B(8,0)代入y=ax2+bx得:

    解得:,
    ∴二次函数的表达式为;
    (2)∵=(x﹣4)2﹣4,
    ∴抛物线的顶点A(4,﹣4),
    设直线AB的函数表达式为y=kx+m,将A(4,﹣4),B(8,0)代入,得:

    解得:,
    ∴直线AB的函数表达式为y=x﹣8;
    (3)△ABO是等腰直角三角形.
    方法1:如图1,过点A作AF⊥OB于点F,则F(4,0),
    ∴∠AFO=∠AFB=90°,OF=BF=AF=4,
    ∴△AFO、△AFB均为等腰直角三角形,
    ∴OA=AB=4,∠OAF=∠BAF=45°,
    ∴∠OAB=90°,
    ∴△ABO是等腰直角三角形.
    方法2:∵△ABO的三个顶点分别是O(0,0),A(4,﹣4),B(8,0),
    ∴OB=8,OA===,
    AB===,
    且满足OB2=OA2+AB2,
    ∴△ABO是等腰直角三角形;
    (4)如图2,以O为圆心,2为半径作圆,则点P在圆周上,依题意知:
    动点E的运动时间为t=AP+PB,
    在OA上取点D,使OD=,连接PD,
    则在△APO和△PDO中,
    满足:==2,∠AOP=∠POD,
    ∴△APO∽△PDO,
    ∴==2,
    从而得:PD=AP,
    ∴t=AP+PB=PD+PB,
    ∴当B、P、D三点共线时,PD+PB取得最小值,
    过点D作DG⊥OB于点G,由于,且△ABO为等腰直角三角形,
    则有 DG=1,∠DOG=45°
    ∴动点E的运动时间t的最小值为:t=DB===5.


    【点评】本题是二次函数综合题,考查了待定系数法求一次函数和二次函数解析式,配方法,相似三角形的判定和性质,等腰直角三角形判定和性质,圆的性质等,熟练掌握待定系数法、相似三角形的判定和性质等相关知识是解题关键.

    考点卡片
    1.二元一次方程组的应用
    (一)列二元一次方程组解决实际问题的一般步骤:
    (1)审题:找出问题中的已知条件和未知量及它们之间的关系.
    (2)设元:找出题中的两个关键的未知量,并用字母表示出来.
    (3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.
    (4)求解.
    (5)检验作答:检验所求解是否符合实际意义,并作答.
    (二)设元的方法:直接设元与间接设元.
    当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.
    2.一元二次方程的应用
    1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.
    2、列一元二次方程解应用题中常见问题:
    (1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.
    (2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即 原数×(1+增长百分率)2=后来数.
    (3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.
    (4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.
    【规律方法】列一元二次方程解应用题的“六字诀”
    1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.
    2.设:根据题意,可以直接设未知数,也可以间接设未知数.
    3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.
    4.解:准确求出方程的解.
    5.验:检验所求出的根是否符合所列方程和实际问题.
    6.答:写出答案.
    3.一次函数的图象
    (1)一次函数的图象的画法:经过两点(0,b)、(﹣,0)或(1,k+b)作直线y=kx+b.
    注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y=b分别是与y轴,x轴平行的直线,就不是一次函数的图象.
    (2)一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.
    当b>0时,向上平移;b<0时,向下平移.
    注意:①如果两条直线平行,则其比例系数相等;反之亦然;
    ②将直线平移,其规律是:上加下减,左加右减;
    ③两条直线相交,其交点都适合这两条直线.
    4.一次函数的性质
    一次函数的性质:
    k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
    由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
    5.正比例函数的性质
    正比例函数的性质.
    6.二次函数的图象
    (1)二次函数y=ax2(a≠0)的图象的画法:
    ①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.
    ②描点:在平面直角坐标系中描出表中的各点.
    ③连线:用平滑的曲线按顺序连接各点.
    ④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
    (2)二次函数y=ax2+bx+c(a≠0)的图象
    二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.
    7.二次函数的性质
    二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:
    ①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.
    ②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.
    ③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.
    8.二次函数图象与系数的关系
    二次函数y=ax2+bx+c(a≠0)
    ①二次项系数a决定抛物线的开口方向和大小.
    当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.
    ②一次项系数b和二次项系数a共同决定对称轴的位置.
    当a与b同号时(即ab>0),对称轴在y轴左侧; 当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)
    ③.常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c).
    ④抛物线与x轴交点个数.
    △=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
    9.二次函数图象上点的坐标特征
    二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).
    ①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.
    ②抛物线与y轴交点的纵坐标是函数解析中的c值.
    ③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=.
    10.抛物线与x轴的交点
    求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.
    (1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
    △=b2﹣4ac决定抛物线与x轴的交点个数.
    △=b2﹣4ac>0时,抛物线与x轴有2个交点;
    △=b2﹣4ac=0时,抛物线与x轴有1个交点;
    △=b2﹣4ac<0时,抛物线与x轴没有交点.
    (2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).
    11.根据实际问题列二次函数关系式
    根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.
    ①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.
    ②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.
    12.二次函数的应用
    (1)利用二次函数解决利润问题
    在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.
    (2)几何图形中的最值问题
    几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.
    (3)构建二次函数模型解决实际问题
    利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.
    13.二次函数综合题
    (1)二次函数图象与其他函数图象相结合问题
    解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
    (2)二次函数与方程、几何知识的综合应用
    将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.
    (3)二次函数在实际生活中的应用题
    从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
    14.平行四边形的性质
    (1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.
    (2)平行四边形的性质:
    ①边:平行四边形的对边相等.
    ②角:平行四边形的对角相等.
    ③对角线:平行四边形的对角线互相平分.
    (3)平行线间的距离处处相等.
    (4)平行四边形的面积:
    ①平行四边形的面积等于它的底和这个底上的高的积.
    ②同底(等底)同高(等高)的平行四边形面积相等.
    15.菱形的判定与性质
    (1)依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.
    (2)菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形.)  (3)菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.
    (4)正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形.
    16.正方形的性质
    (1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
    (2)正方形的性质
    ①正方形的四条边都相等,四个角都是直角;
    ②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;
    ③正方形具有四边形、平行四边形、矩形、菱形的一切性质.
    ④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
    声明:试题解析著作权属 所有,未经书面同意,不得复制发布
    日期:2022/3/16 20:20:55;用户:组卷1;邮箱:zyb001@xyh.com;学号:41418964

    相关试卷

    2017-2021年四川中考数学真题分类汇编之二次函数:

    这是一份2017-2021年四川中考数学真题分类汇编之二次函数,共43页。

    2017-2021年山东中考数学真题分类汇编之二次函数:

    这是一份2017-2021年山东中考数学真题分类汇编之二次函数,共41页。试卷主要包含了之间的函数关系如图所示等内容,欢迎下载使用。

    2017-2021年江苏中考数学真题分类汇编之二次函数:

    这是一份2017-2021年江苏中考数学真题分类汇编之二次函数,共33页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map