2022年江苏省宿迁市中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
2.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )
A. B. C. D.
3.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是( )
A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)
4.计算(2017﹣π)0﹣(﹣)﹣1+tan30°的结果是( )
A.5 B.﹣2 C.2 D.﹣1
5.若分式有意义,则的取值范围是( )
A.; B.; C.; D..
6.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )
A.t< B.t> C.t≤ D.t≥
7.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:
居民(户) | 1 | 2 | 3 | 4 |
月用电量(度/户) | 30 | 42 | 50 | 51 |
那么关于这10户居民月用电量(单位:度),下列说法错误的是( )
A.中位数是50 B.众数是51 C.方差是42 D.极差是21
8.的相反数是( )
A. B.2 C. D.
9.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是( )
A.60° B.50° C.40° D.30°
10.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2
二、填空题(共7小题,每小题3分,满分21分)
11.分解因式:8x²-8xy+2y²= _________________________ .
12.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.
13.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程
已知:线段a、b,
求作:.使得斜边AB=b,AC=a
作法:如图.
(1)作射线AP,截取线段AB=b;
(2)以AB为直径,作⊙O;
(3)以点A为圆心,a的长为半径作弧交⊙O于点C;
(4)连接AC、CB.即为所求作的直角三角形.
请回答:该尺规作图的依据是______.
14.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.
15.比较大小:_____1.
16.将一副三角尺如图所示叠放在一起,则的值是 .
17.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)
三、解答题(共7小题,满分69分)
18.(10分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)
奖金金额 获奖人数 | 20元 | 15元 | 10元 | 5元 |
商家甲超市 | 5 | 10 | 15 | 20 |
乙超市 | 2 | 3 | 20 | 25 |
(1)在甲超市摇奖的顾客获得奖金金额的中位数是 ,在乙超市摇奖的顾客获得奖金金额的众数是 ;
(2)请你补全统计图1;
(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?
(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?
19.(5分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.
20.(8分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.
21.(10分)列方程解应用题
八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.
22.(10分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为 ;
②当AC=3,BC=4时,AD的长为 ;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
23.(12分)已知:不等式≤2+x
(1)求不等式的解;
(2)若实数a满足a>2,说明a是否是该不等式的解.
24.(14分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.
【详解】
解:∵反比例函数的图象位于一三象限,
∴m>0
故①错误;
当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;
将A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,
∵m>0
∴h<k
故③正确;
将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,
故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上
故④正确,
故选:B.
【点睛】
本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.
2、B
【解析】
根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.
【详解】
解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
∴AC=A′C,
∴△ACA′是等腰直角三角形,
∴∠CAA′=45°,
∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
∴∠B=∠A′B′C=65°.
故选B.
【点睛】
本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
3、A
【解析】
由题意可知, 点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.
【详解】
由题意可知, 点A与点A1关于原点成中心对称,
∵点A的坐标是(﹣3,2),
∴点A关于点O的对称点A'点的坐标是(3,﹣2).
故选A.
【点睛】
本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.
4、A
【解析】
试题分析:原式=1-(-3)+=1+3+1=5,故选A.
5、B
【解析】
分式的分母不为零,即x-2≠1.
【详解】
∵分式有意义,
∴x-2≠1,
∴.
故选:B.
【点睛】
考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
6、B
【解析】
将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.
【详解】
由题意可得:﹣x+2=,
所以x2﹣2x+1﹣6t=0,
∵两函数图象有两个交点,且两交点横坐标的积为负数,
∴
解不等式组,得t>.
故选:B.
点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.
7、C
【解析】
试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,
平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,
中位数为50;众数为51,极差为51-30=21,方差为[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.
故选C.
考点:1.方差;2.中位数;3.众数;4.极差.
8、D
【解析】
因为-+=0,所以-的相反数是.
故选D.
9、D
【解析】
由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.
【详解】
解:在△DEF中,∠1=60°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=30°.
∵AB∥CD,
∴∠2=∠D=30°.
故选D.
【点睛】
本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.
10、A
【解析】
试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.
解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,
故选A.
考点:二次函数图象与几何变换.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
提取公因式1,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a1±1ab+b1=(a±b)1.
【详解】
8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1.
故答案为:1(1x-y)1
【点睛】
此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.
12、
【解析】
连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有: 解直角即可.
【详解】
连接OC,OD,OC与AD交于点E,
直尺的宽度:
故答案为
【点睛】
考查垂径定理,熟记垂径定理是解题的关键.
13、等圆的半径相等,直径所对的圆周角是直角,三角形定义
【解析】
根据圆周角定理可判断△ABC为直角三角形.
【详解】
根据作图得AB为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC满足条件.
故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.
14、1.
【解析】
根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.
【详解】
∵双曲线y=与正比例函数y=kx的图象交于A,B两点,
∴点A与点B关于原点对称,∴S△BOC=S△AOC,
∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.
故答案为1.
15、
【解析】
先将1化为根号的形式,根据被开方数越大值越大即可求解.
【详解】
解: , ,
,
故答案为>.
【点睛】
本题考查实数大小的比较,比较大小时,常用的方法有:作差法,作商法,如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较.
16、
【解析】
试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.
∴△ABE∽△DCE.∴.
∵在Rt△ACB中∠B=45°,∴AB=AC.
∵在RtACD中,∠D=30°,∴.
∴.
17、2.9
【解析】
试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.
考点:解直角三角形.
三、解答题(共7小题,满分69分)
18、(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4).
【解析】
(1)根据中位数、众数的定义解答即可;(2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇形统计图,结合概率公式求解即可.
【详解】
(1)在甲超市摇奖的顾客获得奖金金额的中位数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,
故答案为:10元、5元;
(2)补全图形如下:
(3)在甲超市平均获奖为=10(元),
在乙超市平均获奖为=8.2(元);
(4)获得奖金10元的概率是=.
【点睛】
本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.
19、见解析
【解析】
连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=CF,可证得结论.
【详解】
证明:连接AF,
∵EF为AB的垂直平分线,
∴AF=BF,
又AB=AC,∠BAC=120°,
∴∠B=∠C=∠BAF=30°,
∴∠FAC=90°,
∴AF=FC,
∴FC=2BF.
【点睛】
本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
20、见解析
【解析】
试题分析:已知AB∥CD,根据两直线平行,内错角相等可得∠B=∠ECD,再根据SAS证明△ABC≌△ECD全,由全等三角形对应边相等即可得AC=ED.
试题解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.
考点:平行线的性质;全等三角形的判定及性质.
21、15
【解析】
试题分析:设骑车学生的速度为,利用时间关系列方程解应用题,一定要检验.
试题解析:
解:设骑车学生的速度为,由题意得
,
解得 .
经检验是原方程的解.
答: 骑车学生的速度为15.
22、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.
【解析】
(1)①当AC=BC=2时,△ABC为等腰直角三角形;
②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.
【详解】
(1)若△CEF与△ABC相似.
①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,
此时D为AB边中点,AD=AC=.
②当AC=3,BC=4时,有两种情况:
(I)若CE:CF=3:4,如答图2所示,
∵CE:CF=AC:BC,∴EF∥BC.
由折叠性质可知,CD⊥EF,
∴CD⊥AB,即此时CD为AB边上的高.
在Rt△ABC中,AC=3,BC=4,∴BC=1.
∴cosA=.∴AD=AC•cosA=3×=.
(II)若CF:CE=3:4,如答图3所示.
∵△CEF∽△CAB,∴∠CEF=∠B.
由折叠性质可知,∠CEF+∠ECD=90°.
又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.
同理可得:∠B=∠FCD,CD=BD.∴AD=BD.
∴此时AD=AB=×1=.
综上所述,当AC=3,BC=4时,AD的长为或.
(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:
如图所示,连接CD,与EF交于点Q.
∵CD是Rt△ABC的中线
∴CD=DB=AB,
∴∠DCB=∠B.
由折叠性质可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ACB=∠ACB,
∴△CEF∽△CBA.
23、(1)x≥﹣1;(2)a是不等式的解.
【解析】
(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
(2)根据不等式的解的定义求解可得
【详解】
解:(1)去分母得:2﹣x≤3(2+x),
去括号得:2﹣x≤6+3x,
移项、合并同类项得:﹣4x≤4,
系数化为1得:x≥﹣1.
(2)∵a>2,不等式的解集为x≥﹣1,而2>﹣1,
∴a是不等式的解.
【点睛】
本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键
24、2.
【解析】
根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.
【详解】
解:∵AD是△ABC的中线,且BC=10,
∴BD=BC=1.
∵12+122=22,即BD2+AD2=AB2,
∴△ABD是直角三角形,则AD⊥BC,
又∵CD=BD,
∴AC=AB=2.
【点睛】
本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.
江苏省滨淮2022年中考押题数学预测卷含解析: 这是一份江苏省滨淮2022年中考押题数学预测卷含解析,共18页。
2022届江苏省徐州邳州市中考押题数学预测卷含解析: 这是一份2022届江苏省徐州邳州市中考押题数学预测卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列运算正确的是,如图,在平面直角坐标系中,A,“绿水青山就是金山银山”等内容,欢迎下载使用。
2022届江苏省洪泽区金湖县中考押题数学预测卷含解析: 这是一份2022届江苏省洪泽区金湖县中考押题数学预测卷含解析,共17页。