终身会员
搜索
    上传资料 赚现金

    2022年江苏宿迁沭阳县联考中考数学四模试卷含解析

    立即下载
    加入资料篮
    2022年江苏宿迁沭阳县联考中考数学四模试卷含解析第1页
    2022年江苏宿迁沭阳县联考中考数学四模试卷含解析第2页
    2022年江苏宿迁沭阳县联考中考数学四模试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏宿迁沭阳县联考中考数学四模试卷含解析

    展开

    这是一份2022年江苏宿迁沭阳县联考中考数学四模试卷含解析,共23页。试卷主要包含了有一组数据,如图,与∠1是内错角的是,方程的根是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有(  )

    A.1个 B.2个 C.3个 D.4个
    2.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )
    A.2 B.-2 C.±2 D.-
    3.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
    A.120元 B.100元 C.80元 D.60元
    4.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是  
    已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
    求证:∽.
    证明:又,,,,∽.

    A. B. C. D.
    5.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )
    A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
    6.如图,与∠1是内错角的是( )

    A.∠2 B.∠3
    C.∠4 D.∠5
    7.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为(  )

    A.6 B.8 C.10 D.12
    8.方程的根是( )
    A.x=2 B.x=0 C.x1=0,x2=-2 D. x1=0,x2=2
    9.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )

    A. B. C. D.
    10.不等式5+2x <1的解集在数轴上表示正确的是( ).
    A. B. C. D.
    11.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程(  )
    A. B.
    C. +4=9 D.
    12.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为( )

    A. B. C. D.±
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.在函数中,自变量x的取值范围是_________.
    14.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则     (用含k的代数式表示).

    15.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.
    (1)AB的长等于_____;
    (2)点F是线段DE的中点,在线段BF上有一点P,满足,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_____.

    16.如图,一次函数y1=kx+b的图象与反比例函数y2=(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.

    17.方程的解是__________.
    18.阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=﹣1,那么(1+i)•(1﹣i)的平方根是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.求y与x之间的函数关系式;直接写出当x>0时,不等式x+b>的解集;若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.

    20.(6分)计算:﹣|﹣2|+()﹣1﹣2cos45°
    21.(6分)如图,点在线段上,,,.求证:.

    22.(8分)如图,⊙O是Rt△ABC的外接圆,∠C=90°,tanB=,过点B的直线l是⊙O的切线,点D是直线l上一点,过点D作DE⊥CB交CB延长线于点E,连接AD,交⊙O于点F,连接BF、CD交于点G.
    (1)求证:△ACB∽△BED;
    (2)当AD⊥AC时,求 的值;
    (3)若CD平分∠ACB,AC=2,连接CF,求线段CF的长.

    23.(8分)已知二次函数的图象如图6所示,它与轴的一个交点坐标为,与轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值为正数时,自变量的取值范围.

    24.(10分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.
    (1)求抛物线的函数表达式;
    (2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;
    (3)若在轴上有且只有一点,使,求的值.

    25.(10分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G, GB=GC.
    (1)求证:四边形ABCD是矩形;
    (1)若△GEF的面积为1.
    ①求四边形BCFE的面积;
    ②四边形ABCD的面积为   .

    26.(12分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.

    请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为   ,圆心角度数是   度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.
    27.(12分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
    求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.
    故选:C.
    【点睛】
    掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
    2、B
    【解析】
    根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.
    【详解】
    由题意得:m2-3=1,且m+1<0,
    解得:m=-2,
    故选:B.
    【点睛】
    此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.
    3、C
    【解析】
    解:设该商品的进价为x元/件,
    依题意得:(x+20)÷=200,解得:x=1.
    ∴该商品的进价为1元/件.
    故选C.
    4、B
    【解析】
    根据平行线的性质可得到两组对应角相等,易得解题步骤;
    【详解】
    证明:,

    又,

    ∽.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质;关键是证明三角形相似.
    5、C
    【解析】
    解:在这一组数据中6是出现次数最多的,故众数是6;
    而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,
    平均数是:(3+4+5+6+6)÷5=4.8,
    故选C.
    【点睛】
    本题考查众数;算术平均数;中位数.
    6、B
    【解析】
    由内错角定义选B.
    7、B
    【解析】
    根据勾股定理得到OA==5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.
    【详解】
    ∵点A的坐标为(﹣3,﹣4),
    ∴OA==5,
    ∵四边形AOCB是菱形,
    ∴AB=OA=5,AB∥x轴,
    ∴B(﹣8,﹣4),
    ∵点E是菱形AOCB的中心,
    ∴E(﹣4,﹣2),
    ∴k=﹣4×(﹣2)=8,
    故选B.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.
    8、C
    【解析】
    试题解析:x(x+1)=0,
    ⇒x=0或x+1=0,
    解得x1=0,x1=-1.
    故选C.
    9、B
    【解析】
    根据俯视图可确定主视图的列数和每列小正方体的个数.
    【详解】
    由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.
    故答案选B.
    【点睛】
    由几何体的俯视图可确定该几何体的主视图和左视图.
    10、C
    【解析】
    先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.
    【详解】
    5+1x<1,
    移项得1x<-4,
    系数化为1得x<-1.
    故选C.
    【点睛】
    本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.
    11、A
    【解析】
    根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.
    【详解】
    ∵轮船在静水中的速度为x千米/时,
    ∴顺流航行时间为:,逆流航行时间为:,
    ∴可得出方程:,
    故选:A.
    【点睛】
    本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.
    12、D
    【解析】
    根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组 ,求出方程组的解即可.
    【详解】
    解:设一次函数的解析式为:y=kx,
    把点(−3,2a)与点(8a,−3)代入得出方程组 ,
    由①得:,
    把③代入②得: ,
    解得:.
    故选:D.
    【点睛】
    本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、x≤1且x≠﹣1
    【解析】
    试题分析:根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.
    考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.
    14、。
    【解析】
    试题分析:如图,连接EG,

    ∵,∴设,则。
    ∵点E是边CD的中点,∴。
    ∵△ADE沿AE折叠后得到△AFE,
    ∴。
    易证△EFG≌△ECG(HL),∴。∴。
    ∴在Rt△ABG中,由勾股定理得: ,即。
    ∴。
    ∴(只取正值)。
    ∴。
    15、 见图形
    【解析】
    分析:(Ⅰ)利用勾股定理计算即可;
    (Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K,因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;
    详解:(Ⅰ)AB的长==;
    (Ⅱ)由题意:连接AC、BD.易知:AC∥BD,
    可得:EC:ED=AC:BD=3:1.
    取格点G、H,连接GH交DE于F.
    ∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.
    取格点I、J,连接IJ交BD于K.
    ∵BI∥DJ,∴BK:DK=BI:DJ=5:2.
    连接EK交BF于P,可证BP:PF=5:3.

    故答案为(Ⅰ);
    (Ⅱ)由题意:连接AC、BD.
    易知:AC∥BD,可得:EC:ED=AC:BD=3:1,
    取格点G、H,连接GH交DE于F.
    因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.
    取格点I、J,连接IJ交BD于K.
    因为BI∥DJ,所以BK:DK=BI:DJ=5:2,
    连接EK交BF于P,可证BP:PF=5:3.
    点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
    16、-2 【解析】
    根据图象可直接得到y1>y2>0时x的取值范围.
    【详解】
    根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,
    故答案为﹣2<x<﹣0.5.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.
    17、x=1
    【解析】
    将方程两边平方后求解,注意检验.
    【详解】
    将方程两边平方得x-3=4,
    移项得:x=1,
    代入原方程得=2,原方程成立,
    故方程=2的解是x=1.
    故本题答案为:x=1.
    【点睛】
    在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.
    18、2
    【解析】
    根据平方根的定义进行计算即可.
    【详解】
    .解:∵i2=﹣1,
    ∴(1+i)•(1﹣i)=1﹣i2=2,
    ∴(1+i)•(1﹣i)的平方根是±,
    故答案为±.
    【点睛】
    本题考查平方根以及实数的运算,解题关键掌握平方根的定义.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2)x>1;(3)P(﹣,0)或(,0)
    【解析】
    分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;
    (2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;
    (3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.
    详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,
    ∴A(1,3),
    把A(1,3)代入双曲线y=,可得k=1×3=3,
    ∴y与x之间的函数关系式为:y=;
    (2)∵A(1,3),
    ∴当x>0时,不等式x+b>的解集为:x>1;
    (3)y1=﹣x+4,令y=0,则x=4,
    ∴点B的坐标为(4,0),
    把A(1,3)代入y2=x+b,可得3=+b,
    ∴b=,
    ∴y2=x+,
    令y2=0,则x=﹣3,即C(﹣3,0),
    ∴BC=7,
    ∵AP把△ABC的面积分成1:3两部分,
    ∴CP=BC=,或BP=BC=
    ∴OP=3﹣=,或OP=4﹣=,
    ∴P(﹣,0)或(,0).
    点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
    20、+1
    【解析】
    分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案.
    详解:原式=2﹣2+3﹣2×
    =2+1﹣
    =+1.
    点睛:本题主要考查了实数运算,正确化简各数是解题的关键.
    21、证明见解析
    【解析】
    若要证明∠A=∠E,只需证明△ABC≌△EDB,题中已给了两边对应相等,只需看它们的夹角是否相等,已知给了DE//BC,可得∠ABC=∠BDE,因此利用SAS问题得解.
    【详解】
    ∵DE//BC
    ∴∠ABC=∠BDE
    在△ABC与△EDB中

    ∴△ABC≌△EDB(SAS)
    ∴∠A=∠E
    22、(1)详见解析;(2) ;(3).
    【解析】
    (1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;
    (2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;
    (3)想办法证明AB垂直平分CF即可解决问题.
    【详解】
    (1)证明:如图1中,

    ∵DE⊥CB,
    ∴∠ACB=∠E=90°,
    ∵BD是切线,
    ∴AB⊥BD,
    ∴∠ABD=90°,
    ∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,
    ∴∠ABC=∠BDE,
    ∴△ACB∽△BED;
    (2)解:如图2中,

    ∵△ACB∽△BED;四边形ACED是矩形,
    ∴BE:DE:BC=1:2:4,
    ∵DF∥BC,
    ∴△GCB∽△GDF,
    ∴=;
    (3)解:如图3中,

    ∵tan∠ABC==,AC=2,
    ∴BC=4,BE=4,DE=8,AB=2,BD=4,
    易证△DBE≌△DBF,可得BF=4=BC,
    ∴AC=AF=2,
    ∴CF⊥AB,设CF交AB于H,
    则CF=2CH=2×.
    【点睛】
    本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
    23、(1);(2).
    【解析】
    (1)将(-1,0)和(0,3)两点代入二次函数y=-x2+bx+c,求得b和c;从而得出抛物线的解析式;
    (2)令y=0,解得x1,x2,得出此二次函数的图象与x轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x的取值范围.
    【详解】
    解:(1)由二次函数的图象经过和两点,
    得,
    解这个方程组,得

    抛物线的解析式为,
    (2)令,得.
    解这个方程,得,.
    ∴此二次函数的图象与轴的另一个交点的坐标为.
    当时,.
    【点睛】
    本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.
    24、(1).;(2)点坐标为;.(3).
    【解析】
    分析:(1)根据已知列出方程组求解即可;
    (2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;
    (3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.
    详解:(1)由题可得:解得,,.
    二次函数解析式为:.
    (2)作轴,轴,垂足分别为,则.

    ,,,
    ,解得,,.
    同理,.

    ①(在下方),,
    ,即,.
    ,,.
    ②在上方时,直线与关于对称.
    ,,.
    ,,.
    综上所述,点坐标为;.
    (3)由题意可得:.
    ,,,即.
    ,,.
    设的中点为,
    点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.
    轴,为的中点,.
    ,,,
    ,即,.
    ,.
    点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.
    25、(1)证明见解析;(1)①16;②14;
    【解析】
    (1)根据平行四边形的性质得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根据全等三角形的性质得到∠A=∠D,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;
    (1)①根据相似三角形的性质得到,求得△GBC的面积为18,于是得到四边形BCFE的面积为16;
    ②根据四边形BCFE的面积为16,列方程得到BC•AB=14,即可得到结论.
    【详解】
    (1)证明:∵GB=GC,
    ∴∠GBC=∠GCB,
    在平行四边形ABCD中,
    ∵AD∥BC,AB=DC,AB∥CD,
    ∴GB-GE=GC-GF,
    ∴BE=CF,
    在△ABE与△DCF中,

    ∴△ABE≌△DCF,
    ∴∠A=∠D,
    ∵AB∥CD,
    ∴∠A+∠D=180°,
    ∴∠A=∠D=90°,
    ∴四边形ABCD是矩形;
    (1)①∵EF∥BC,
    ∴△GFE∽△GBC,
    ∵EF=AD,
    ∴EF=BC,
    ∴,
    ∵△GEF的面积为1,
    ∴△GBC的面积为18,
    ∴四边形BCFE的面积为16,;
    ②∵四边形BCFE的面积为16,
    ∴(EF+BC)•AB=×BC•AB=16,
    ∴BC•AB=14,
    ∴四边形ABCD的面积为14,
    故答案为:14.
    【点睛】
    本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE∽△GBC是解题的关键.
    26、(1)35%,126;(2)见解析;(3)1344人
    【解析】
    (1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;
    (2)求出3小时以上的人数,补全条形统计图即可;
    (3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果.
    【详解】
    (1)根据题意得:1﹣(40%+18%+7%)=35%,
    则“玩游戏”对应的圆心角度数是360°×35%=126°,
    故答案为35%,126;
    (2)根据题意得:40÷40%=100(人),
    ∴3小时以上的人数为100﹣(2+16+18+32)=32(人),
    补全图形如下:

    (3)根据题意得:2100×=1344(人),
    则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.
    【点睛】
    本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.
    27、(1)证明见解析;(2).
    【解析】
    (1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
    (2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
    【详解】
    解:(1)证明:连接OD,

    ∵∠ACD=60°,
    ∴由圆周角定理得:∠AOD=2∠ACD=120°.
    ∴∠DOP=180°﹣120°=60°.
    ∵∠APD=30°,
    ∴∠ODP=180°﹣30°﹣60°=90°.
    ∴OD⊥DP.
    ∵OD为半径,
    ∴DP是⊙O切线.
    (2)∵∠ODP=90°,∠P=30°,OD=3cm,
    ∴OP=6cm,由勾股定理得:DP=3cm.
    ∴图中阴影部分的面积

    相关试卷

    2024年江苏省宿迁市沭阳县中考数学一模试卷(含解析):

    这是一份2024年江苏省宿迁市沭阳县中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省宿迁市沭阳县中考数学一模试卷(含解析):

    这是一份2024年江苏省宿迁市沭阳县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省宿迁市沭阳县中考数学一模试卷 (含解析):

    这是一份2024年江苏省宿迁市沭阳县中考数学一模试卷 (含解析),共27页。试卷主要包含了选择题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map