终身会员
搜索
    上传资料 赚现金

    2021-2022学年江苏省姜堰区六校联考中考数学模试卷含解析

    立即下载
    加入资料篮
    2021-2022学年江苏省姜堰区六校联考中考数学模试卷含解析第1页
    2021-2022学年江苏省姜堰区六校联考中考数学模试卷含解析第2页
    2021-2022学年江苏省姜堰区六校联考中考数学模试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省姜堰区六校联考中考数学模试卷含解析

    展开

    这是一份2021-2022学年江苏省姜堰区六校联考中考数学模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,已知,下列图形中一定是相似形的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,,则的度数为( )

    A.115° B.110° C.105° D.65°
    2.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE等于(  )

    A.40° B.70° C.60° D.50°
    3.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为(  )

    A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
    4.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,则AB的长为(  )

    A. B. C.1 D.
    5.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是(  )
    A.r<5 B.r>5 C.r<10 D.5<r<10
    6.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是( )

    A.45° B.85° C.90° D.95°
    7.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则(  )

    A.DE=EB B.DE=EB C.DE=DO D.DE=OB
    8.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是(  )
    A. B. C. D.
    9.下列图形中一定是相似形的是( )
    A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形
    10.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为 ( )
    A.149×106千米2 B.14.9×107千米2
    C.1.49×108千米2 D.0.149×109千2
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在△PAB中,PA=PB,M、N、K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=40°,则∠P的度数为___

    12.若a+b=3,ab=2,则a2+b2=_____.
    13.如图,已知AB∥CD,若,则=_____.

    14.如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角为时,两梯角之间的距离BC的长为周日亮亮帮助妈妈整理换季衣服,先使为,后又调整为,则梯子顶端离地面的高度AD下降了______结果保留根号.

    15.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.

    16.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E= .

    17.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转 270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.
    求证:AP=BQ;当BQ= 时,求的长(结果保留 );若△APO的外心在扇形COD的内部,求OC的取值范围.
    19.(5分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.
    (1)求抛物线的解析式;
    (2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;
    (3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

    20.(8分)如图,已知点A,B,C在半径为4的⊙O上,过点C作⊙O的切线交OA的延长线于点D.
    (Ⅰ)若∠ABC=29°,求∠D的大小;
    (Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于点E,求:
    ①BE的长;
    ②四边形ABCD的面积.

    21.(10分)先化简,再求值:,其中x=-1.
    22.(10分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.
    (1)求两种机器人每台每小时各分拣多少件包裹;
    (2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?

    23.(12分)已知关于x的方程.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.
    24.(14分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-x+150,成本为20元/件,月利润为W内(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润为W外(元).
    (1)若只在国内销售,当x=1000(件)时,y= (元/件);
    (2)分别求出W内、W外与x间的函数关系式(不必写x的取值范围);
    (3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.
    【详解】
    ∵∠AFD=65°,
    ∴∠CFB=65°,
    ∵CD∥EB,
    ∴∠B=180°−65°=115°,
    故选:A.
    【点睛】
    本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.
    2、D
    【解析】
    根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.
    【详解】
    ∵DE垂直平分AC交AB于E,
    ∴AE=CE,
    ∴∠A=∠ACE,
    ∵∠A=30°,
    ∴∠ACE=30°,
    ∵∠ACB=80°,
    ∴∠BCE=∠ACB-∠ACE=50°,
    故选D.
    【点睛】
    本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
    3、B
    【解析】
    【分析】由已知可证△ABO∽CDO,故 ,即.
    【详解】由已知可得,△ABO∽CDO,
    所以, ,
    所以,,
    所以,AB=5.4
    故选B
    【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
    4、B
    【解析】
    由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB=CD,
    ∵AE∥BD,
    ∴四边形ABDE是平行四边形,
    ∴AB=DE,
    ∴AB=DE=CD,即D为CE中点,
    ∵EF⊥BC,
    ∴∠EFC=90°,
    ∵AB∥CD,
    ∴∠ECF=∠ABC,
    ∴tan∠ECF=tan∠ABC=,
    在Rt△CFE中,EF=,tan∠ECF===,
    ∴CF=,
    根据勾股定理得,CE==,
    ∴AB=CE=,
    故选B.
    【点睛】
    本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键.
    5、D
    【解析】
    延长CD交⊙D于点E,
    ∵∠ACB=90°,AC=12,BC=9,∴AB==15,
    ∵D是AB中点,∴CD=,
    ∵G是△ABC的重心,∴CG==5,DG=2.5,
    ∴CE=CD+DE=CD+DF=10,
    ∵⊙C与⊙D相交,⊙C的半径为r,
    ∴ ,
    故选D.

    【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.
    6、B
    【解析】
    解:∵AC是⊙O的直径,∴∠ABC=90°,
    ∵∠C=50°,∴∠BAC=40°,
    ∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,
    ∴∠CAD=∠DBC=45°,
    ∴∠BAD=∠BAC+∠CAD=40°+45°=85°,
    故选B.
    【点睛】
    本题考查圆周角定理;圆心角、弧、弦的关系.
    7、D
    【解析】
    解:连接EO.

    ∴∠B=∠OEB,
    ∵∠OEB=∠D+∠DOE,∠AOB=3∠D,
    ∴∠B+∠D=3∠D,
    ∴∠D+∠DOE+∠D=3∠D,
    ∴∠DOE=∠D,
    ∴ED=EO=OB,
    故选D.
    8、B
    【解析】
    ∵2a=3b,∴ ,∴ ,∴A、C、D选项错误,B选项正确,
    故选B.
    9、B
    【解析】
    如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.
    【详解】
    解:∵等边三角形的对应角相等,对应边的比相等,
    ∴两个等边三角形一定是相似形,
    又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,
    ∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,
    故选:B.
    【点睛】
    本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.
    10、C
    【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
    解:149 000 000=1.49×2千米1.
    故选C.
    把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,n为整数.因此不能写成149×106而应写成1.49×2.

    二、填空题(共7小题,每小题3分,满分21分)
    11、100°
    【解析】
    由条件可证明△AMK≌△BKN,再结合外角的性质可求得∠A=∠MKN,再利用三角形内角和可求得∠P.
    【详解】
    解:∵PA=PB,
    ∴∠A=∠B,
    在△AMK和△BKN中,

    ∴△AMK≌△BKN(SAS),
    ∴∠AMK=∠BKN,
    ∵∠A+∠AMK=∠MKN+∠BKN,
    ∴∠A=∠MKN=40°,
    ∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,
    故答案为100°
    【点睛】
    本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK≌△BKN是解题的关键.
    12、1
    【解析】
    根据a2+b2=(a+b)2-2ab,代入计算即可.
    【详解】
    ∵a+b=3,ab=2,
    ∴a2+b2=(a+b)2﹣2ab=9﹣4=1.
    故答案为:1.
    【点睛】
    本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式.
    13、
    【解析】
    【分析】利用相似三角形的性质即可解决问题;
    【详解】∵AB∥CD,
    ∴△AOB∽△COD,
    ∴,
    故答案为.
    【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.
    14、
    【解析】
    根据题意画出图形,进而利用锐角三角函数关系得出答案.
    【详解】
    解:如图1所示:
    过点A作于点D,
    由题意可得:,
    则是等边三角形,
    故BC,
    则,

    如图2所示:
    过点A作于点E,
    由题意可得:,
    则是等腰直角三角形,,
    则,
    故梯子顶端离地面的高度AD下降了
    故答案为:.
    【点睛】
    此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键.
    15、40
    【解析】
    首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.
    【详解】
    解:在Rt△PAB中,∵∠APB=30°,
    ∴PB=2AB,
    由题意BC=2AB,
    ∴PB=BC,
    ∴∠C=∠CPB,
    ∵∠ABP=∠C+∠CPB=60°,
    ∴∠C=30°,
    ∴PC=2PA,
    ∵PA=AB•tan60°,
    ∴PC=2×20×=40(km),
    故答案为40.
    【点睛】
    本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.
    16、50°.
    【解析】
    解:连接DF,连接AF交CE于G,

    ∵EF为⊙O的切线,
    ∴∠OFE=90°,
    ∵AB为直径,H为CD的中点
    ∴AB⊥CD,即∠BHE=90°,
    ∵∠ACF=65°,
    ∴∠AOF=130°,
    ∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,
    故答案为:50°.
    17、
    【解析】
    试题解析:∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵AE垂直平分OB,
    ∴AB=AO,
    ∴OA=AB=OB=3,
    ∴BD=2OB=6,
    ∴AD=.
    【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)详见解析;(2);(3)4 【解析】
    (1) 连接OQ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.
    (2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P、O、Q三点共线,在Rt△BOQ中,根据余弦定义可得cosB=, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD度数,由弧长公式即可求得答案.
    (3)由直角三角形性质可得△APO的外心是OA的中点 ,结合题意可得OC取值范围.
    【详解】
    (1)证明:连接OQ.

    ∵AP、BQ是⊙O的切线,
    ∴OP⊥AP,OQ⊥BQ,
    ∴∠APO=∠BQO=90∘,
    在Rt△APO和Rt△BQO中,

    ∴Rt△APO≌Rt△BQO,
    ∴AP=BQ.
    (2)∵Rt△APO≌Rt△BQO,
    ∴∠AOP=∠BOQ,
    ∴P、O、Q三点共线,
    ∵在Rt△BOQ中,cosB=,
    ∴∠B=30∘,∠BOQ= 60° ,
    ∴OQ=OB=4,
    ∵∠COD=90°,
    ∴∠QOD= 90°+ 60° = 150°,
    ∴优弧QD的长=,
    (3)解:设点M为Rt△APO的外心,则M为OA的中点,
    ∵OA=1,
    ∴OM=4,
    ∴当△APO的外心在扇形COD的内部时,OM<OC,
    ∴OC的取值范围为4<OC<1.
    【点睛】
    本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL证出Rt△APO≌Rt△BQO;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.
    19、(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3).
    【解析】
    (1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;
    (2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;
    (3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.
    【详解】
    解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,
    ∴抛物线与x轴的交点B的坐标为(1,0),
    设抛物线解析式为y=a(x+3)(x﹣1),
    将点C(0,﹣3)代入,得:﹣3a=﹣3,
    解得a=1,
    则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;
    (2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.
    ∵S△POC=2S△BOC,
    ∴•OC•|a|=2×OC•OB,即×3×|a|=2××3×1,解得a=±2.
    当a=2时,点P的坐标为(2,21);
    当a=﹣2时,点P的坐标为(﹣2,5).
    ∴点P的坐标为(2,21)或(﹣2,5).
    (3)如图所示:

    设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,
    ∴直线AC的解析式为y=﹣x﹣3.
    设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).
    ∴QD=﹣x﹣3﹣( x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,
    ∴当x=﹣时,QD有最大值,QD的最大值为.
    【点睛】
    本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.
    20、(1)∠D=32°;(2)①BE=;②
    【解析】
    (Ⅰ)连接OC, CD为切线,根据切线的性质可得∠OCD=90°,根据圆周角定理可得∠AOC=2∠ABC=29°×2=58°,根据直角三角形的性质可得∠D的大小.
    (Ⅱ)①根据∠D=30°,得到∠DOC=60°,根据∠BAO=15°,可以得出∠AOB=150°,进而证明△OBC为等腰直角三角形,根据等腰直角三角形的性质得出
    根据圆周角定理得出根据含角的直角三角形的性质即可求出BE的长;
    ②根据四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB进行计算即可.
    【详解】
    (Ⅰ)连接OC,
    ∵CD为切线,
    ∴OC⊥CD,
    ∴∠OCD=90°,
    ∵∠AOC=2∠ABC=29°×2=58°,
    ∴∠D=90°﹣58°=32°;
    (Ⅱ)①连接OB,
    在Rt△OCD中,∵∠D=30°,
    ∴∠DOC=60°,
    ∵∠BAO=15°,
    ∴∠OBA=15°,
    ∴∠AOB=150°,
    ∴∠OBC=150°﹣60°=90°,
    ∴△OBC为等腰直角三角形,


    在Rt△CBE中,

    ②作BH⊥OA于H,如图,
    ∵∠BOH=180°﹣∠AOB=30°,

    ∴四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB


    【点睛】
    考查切线的性质,圆周角定理,等腰直角三角形的判定与性质,含角的等腰直角三角形的性质,三角形的面积公式等,题目比较典型,综合性比较强,难度适中.
    21、解:原式=,.
    【解析】
    试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x的值,进行二次根式化简.
    解:原式=.
    当x=-1时,原式.
    22、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台
    【解析】
    (1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;
    (2)设最多应购进A种机器人a台,购进B种机器人(200−a)台,由题意得,根据题意两不等式即可得到结论.
    【详解】
    (1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,
    由题意得,,
    解得,,
    答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;
    (2)设最多应购进A种机器人a台,购进B种机器人(200﹣a)台,
    由题意得,30a+40(200﹣a)≥7000,
    解得:a≤100,则最多应购进A种机器人100台.
    【点睛】
    本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.
    23、(1),;(2)证明见解析.
    【解析】
    试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
    (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
    试题解析:(1)设方程的另一根为x1,
    ∵该方程的一个根为1,∴.解得.
    ∴a的值为,该方程的另一根为.
    (2)∵,
    ∴不论a取何实数,该方程都有两个不相等的实数根.
    考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
    24、(1)140;(2)W内=-x2+130x,W外=-x2+ (150-a)x;(3)a=1.
    【解析】
    试题分析:(1)将x=1000代入函数关系式求得y,;
    (2)根据等量关系“利润=销售额﹣成本”“利润=销售额﹣成本﹣附加费”列出函数关系式;
    (3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值.
    试题解析:(1)x=1000,y=-×1000+150=140;
    (2)W内=(y-1)x=(-x+150-1)x=-x2+130x.
    W外=(150-a)x-x2=-x2+(150-a)x;
    (3)W内=-x2+130x=-(x-6500)2+2,
    由W外=-x2+(150-a)x得:W外最大值为:(750-5a)2,
    所以:(750-5a)2=2.
    解得a=280或a=1.
    经检验,a=280不合题意,舍去,
    ∴a=1.
    考点:二次函数的应用.

    相关试卷

    2023年江苏省泰州市姜堰区中考数学二模试卷(含解析):

    这是一份2023年江苏省泰州市姜堰区中考数学二模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省姜堰市励才实验校2022年中考数学模试卷含解析:

    这是一份江苏省姜堰市励才实验校2022年中考数学模试卷含解析,共19页。试卷主要包含了下列运算结果正确的是,化简的结果是等内容,欢迎下载使用。

    2022年江苏省姜堰区六校联考中考适应性考试数学试题含解析:

    这是一份2022年江苏省姜堰区六校联考中考适应性考试数学试题含解析,共20页。试卷主要包含了方程的解是,如图,立体图形的俯视图是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map