2022年江西省鄱阳县达标名校中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知两点都在反比例函数图象上,当时, ,则的取值范围是( )
A. B. C. D.
2.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )
A.点M B.点N C.点P D.点Q
3.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
A.2个 B.3个 C.4个 D.5个
4.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是( )
A.
B.
C.
D.
5.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是( )
A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×107
6.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
7.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为( )
A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
8.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是( )
A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c
9.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )
A. B. C. D.
10.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.计算的结果是__________.
12.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).
13.已知一组数据,,﹣2,3,1,6的中位数为1,则其方差为____.
14.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B,点 B 的坐标为(﹣,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.
15.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_______________.
16.分解因式:2x3﹣4x2+2x=_____.
17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm.
三、解答题(共7小题,满分69分)
18.(10分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的A等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
19.(5分)在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰三角形ADE,使∠DAE=90°,连接CE.
探究:如图①,当点D在线段BC上时,证明BC=CE+CD.
应用:在探究的条件下,若AB=,CD=1,则△DCE的周长为 .
拓展:(1)如图②,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为 .
(2)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为 .
20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
此次共调查了 名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为 度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.
21.(10分)如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BF∥AC.
22.(10分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.
(1)求证:;
(2)若△OCP与△PDA的面积比为1:4,求边AB的长.
23.(12分)已知,,,斜边,将绕点顺时针旋转,如图1,连接.
(1)填空: ;
(2)如图1,连接,作,垂足为,求的长度;
(3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?
24.(14分)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).求直线与双曲线的解析式.点P在x轴上,如果S△ABP=3,求点P的坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据反比例函数的性质判断即可.
【详解】
解:∵当x1<x2<0时,y1<y2,
∴在每个象限y随x的增大而增大,
∴k<0,
故选:B.
【点睛】
本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质.
2、C
【解析】
试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.
考点:有理数大小比较.
3、C
【解析】
试题分析:∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,
∵AD=AB,
∴AE=AD,
又∠ABE=∠AHD=90°
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=(180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠CED,故①正确;
∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),
∴∠OHE=∠AED,
∴OE=OH,
∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
∴∠OHD=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,
∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;
∵AB=AH,∠BAE=45°,
∴△ABH不是等边三角形,
∴AB≠BH,
∴即AB≠HF,故⑤错误;
综上所述,结论正确的是①②③④共4个.
故选C.
【点睛】
考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质
4、C
【解析】
首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.
故选C.
点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.
5、B
【解析】
试题解析:0.00 000 069=6.9×10-7,
故选B.
点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
6、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.
故选:C.
【点睛】
掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
7、D
【解析】
解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.
点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
8、C
【解析】
首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.
【详解】
解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,
∴a+b>0,c﹣b<0
∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,
故答案为a+c.
故选A.
9、D
【解析】
先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.
【详解】
解:∵点M的坐标是(4,3),
∴点M到x轴的距离是3,到y轴的距离是4,
∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,
∴r的取值范围是3<r<4,
故选:D.
【点睛】
本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.
10、C
【解析】
根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.
【详解】
A. 当时,能判断;
B. 当时,能判断;
C. 当时,不能判断;
D. 当时,,能判断.
故选:C.
【点睛】
本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果.
详解:原式
故答案为:1.
点睛:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.
12、甲.
【解析】
乙所得环数的平均数为:=5,
S2=[+++…+]
=[++++]
=16.4,
甲的方差<乙的方差,所以甲较稳定.
故答案为甲.
点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.
13、3
【解析】
试题分析:∵数据﹣3,x,﹣3,3,3,6的中位数为3,∴,解得x=3,∴数据的平均数=(﹣3﹣3+3+3+3+6)=3,∴方差=[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3.
考点:3.方差;3.中位数.
14、(,)
【解析】
连接AB,OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO以及∠BCO的度数,在Rt△COD中,解直角三角形即可解决问题;
【详解】
连接AB,OC,
∵∠AOB=90°,
∴AB为⊙C的直径,
∵∠BMO=120°,
∴∠BAO=60°,
∴∠BCO=2∠BAO=120°,
过C作CD⊥OB于D,则OD=OB,∠DCB=∠DCO=60°,
∵B(-,0),
∴BD=OD=
在Rt△COD中.CD=OD•tan30°=,
∴C(-,),
故答案为C(-,).
【点睛】
本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键.
15、a<2且a≠1.
【解析】
利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.
【详解】
试题解析:∵关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,
∴△=b2-4ac>0,即4-4×(a-2)×1>0,
解这个不等式得,a<2,
又∵二次项系数是(a-1),
∴a≠1.
故a的取值范围是a<2且a≠1.
【点睛】
本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.
16、2x(x-1)2
【解析】
2x3﹣4x2+2x=
17、1.
【解析】
试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,
∴AC=1cm.
考点:1轴对称;2矩形的性质;3等腰三角形.
三、解答题(共7小题,满分69分)
18、(1)图见解析;(2)126°;(3)1.
【解析】
(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;
(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;
(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.
【详解】
(1)48÷40%=120(人),
120×15%=18(人),
120-48-18-12=42(人).
将条形统计图补充完整,如图所示.
(2)42÷120×100%×360°=126°.
答:扇形统计图中的A等对应的扇形圆心角为126°.
(3)1500×=1(人).
答:该校学生对政策内容了解程度达到A等的学生有1人.
【点睛】
本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.
19、探究:证明见解析;应用:;拓展:(1)BC= CD-CE,(2)BC= CE-CD
【解析】
试题分析:探究:判断出∠BAD=∠CAE,再用SAS即可得出结论;
应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论;
(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论.
试题解析:探究:∵∠BAC=90°,∠DAE=90°,
∴∠BAC=∠DAE.
∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,
∴∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴△ABD≌△ACE.
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
应用:在Rt△ABC中,AB=AC=,
∴∠ABC=∠ACB=45°,BC=2,
∵CD=1,
∴BD=BC-CD=1,
由探究知,△ABD≌△ACE,
∴∠ACE=∠ABD=45°,
∴∠DCE=90°,
在Rt△BCE中,CD=1,CE=BD=1,
根据勾股定理得,DE=,
∴△DCE的周长为CD+CE+DE=2+
故答案为2+
拓展:(1)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=CD-BD=CD-CE,
故答案为BC=CD-CE;
(2)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=BD-CD=CE-CD,
故答案为BC=CE-CD.
20、 (1)200;(2)见解析;(3)126°;(4)240人.
【解析】
(1)根据文史类的人数以及文史类所占的百分比即可求出总人数
(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;
(3)根据小说类的百分比即可求出圆心角的度数;
(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数
【详解】
(1)∵喜欢文史类的人数为76人,占总人数的38%,
∴此次调查的总人数为:76÷38%=200人,
故答案为200;
(2)∵喜欢生活类书籍的人数占总人数的15%,
∴喜欢生活类书籍的人数为:200×15%=30人,
∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,
如图所示:
(3)∵喜欢社科类书籍的人数为:24人,
∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,
∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,
∴小说类所在圆心角为:360°×35%=126°;
(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,
∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.
【点睛】
此题考查扇形统计图和条形统计图,看懂图中数据是解题关键
21、见解析.
【解析】
(1)画出⊙O的两条直径,交点即为圆心O.
(2)作直线AO交⊙O于F,直线BF即为所求.
【详解】
解:作图如下:
(1);
(2).
【点睛】
本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
22、 (1)详见解析;(2)10.
【解析】
①只需证明两对对应角分别相等可得两个三角形相似;故.
②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.
【详解】
①∵四边形ABCD是矩形,
∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.
由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.
∴∠APO=90°.
∴∠APD=90°−∠CPO=∠POC.
∵∠D=∠C,∠APD=∠POC.
∴△OCP∽△PDA.
∴.
②∵△OCP与△PDA的面积比为1:4,
∴OCPD=OPPA=CPDA=14−−√=12.
∴PD=2OC,PA=2OP,DA=2CP.
∵AD=8,
∴CP=4,BC=8.
设OP=x,则OB=x,CO=8−x.
在△PCO中,
∵∠C=90∘,CP=4,OP=x,CO=8−x,
∴x2=(8−x)2+42.
解得:x=5.
∴AB=AP=2OP=10.
∴边AB的长为10.
【点睛】
本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.
23、(1)1;(2);(3)x时,y有最大值,最大值.
【解析】
(1)只要证明△OBC是等边三角形即可;
(2)求出△AOC的面积,利用三角形的面积公式计算即可;
(3)分三种情形讨论求解即可解决问题:①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.
【详解】
(1)由旋转性质可知:OB=OC,∠BOC=1°,
∴△OBC是等边三角形,
∴∠OBC=1°.
故答案为1.
(2)如图1中.
∵OB=4,∠ABO=30°,
∴OAOB=2,ABOA=2,
∴S△AOC•OA•AB2×2.
∵△BOC是等边三角形,
∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,
∴AC,
∴OP.
(3)①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.
则NE=ON•sin1°x,
∴S△OMN•OM•NE1.5xx,
∴yx2,
∴x时,y有最大值,最大值.
②当x≤4时,M在BC上运动,N在OB上运动.
作MH⊥OB于H.
则BM=8﹣1.5x,MH=BM•sin1°(8﹣1.5x),
∴yON×MHx2+2x.
当x时,y取最大值,y,
③当4<x≤4.8时,M、N都在BC上运动,
作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,
∴y•MN•OG=12x,
当x=4时,y有最大值,最大值=2.
综上所述:y有最大值,最大值为.
【点睛】
本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.
24、(1)y=﹣2x+1;(2)点P的坐标为(﹣,0)或(,0).
【解析】
(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;
(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出,解之即可得出结论.
【详解】
(1)∵双曲线y=(m≠0)经过点A(﹣,2),
∴m=﹣1.
∴双曲线的表达式为y=﹣.
∵点B(n,﹣1)在双曲线y=﹣上,
∴点B的坐标为(1,﹣1).
∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),
∴,解得
∴直线的表达式为y=﹣2x+1;
(2)当y=﹣2x+1=0时,x=,
∴点C(,0).
设点P的坐标为(x,0),
∵S△ABP=3,A(﹣,2),B(1,﹣1),
∴×3|x﹣|=3,即|x﹣|=2,
解得:x1=﹣,x2=.
∴点P的坐标为(﹣,0)或(,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出.
江西省上饶市鄱阳县达标名校2022年中考数学模拟试题含解析: 这是一份江西省上饶市鄱阳县达标名校2022年中考数学模拟试题含解析,共24页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022年湖南省桂阳县达标名校中考数学押题卷含解析: 这是一份2022年湖南省桂阳县达标名校中考数学押题卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在平面直角坐标系中,A等内容,欢迎下载使用。
2022年福建省沙县重点达标名校中考数学押题卷含解析: 这是一份2022年福建省沙县重点达标名校中考数学押题卷含解析,共21页。试卷主要包含了下列计算正确的是,二次函数的对称轴是,我省2013年的快递业务量为1,下列运算正确的是等内容,欢迎下载使用。