|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年江苏省泰兴市洋思中学中考五模数学试题含解析
    立即下载
    加入资料篮
    2022年江苏省泰兴市洋思中学中考五模数学试题含解析01
    2022年江苏省泰兴市洋思中学中考五模数学试题含解析02
    2022年江苏省泰兴市洋思中学中考五模数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省泰兴市洋思中学中考五模数学试题含解析

    展开
    这是一份2022年江苏省泰兴市洋思中学中考五模数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列计算错误的是,不等式组的正整数解的个数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知二次函数(为常数),当时,函数的最小值为5,则的值为(  )
    A.-1或5 B.-1或3 C.1或5 D.1或3
    2.已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(   )
    A.                      B.                      C.                      D.
    3.用配方法解方程x2﹣4x+1=0,配方后所得的方程是( )
    A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣3
    4.如图,以两条直线l1,l2的交点坐标为解的方程组是( )

    A. B. C. D.
    5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是(  )
    A.6  B.7 C.11 D.12
    6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )
    A.6折 B.7折
    C.8折 D.9折
    7.下列计算错误的是(  )
    A.4x3•2x2=8x5 B.a4﹣a3=a
    C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣2ab+b2
    8.不等式组的正整数解的个数是(  )
    A.5 B.4 C.3 D.2
    9.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为(  )
    A.3 B.4 C.5 D.6
    10.如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )

    A. B. C. D.
    11.如图,空心圆柱体的左视图是( )

    A. B. C. D.
    12.(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.二次根式 中的字母a的取值范围是_____.
    14.下面是“作已知圆的内接正方形”的尺规作图过程.
    已知:⊙O.
    求作:⊙O的内接正方形.
    作法:如图,
    (1)作⊙O的直径AB;
    (2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;
    (3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.
    请回答:该尺规作图的依据是_____.

    15.如图,⊙O的直径CD垂直于AB,∠AOC=48°,则∠BDC=  度.
    16.8的立方根为_______.
    17.因式分解:3a2-6a+3=________.
    18.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.
    已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.
    (1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,
    ①求∠DAF的度数;
    ②求证:△ADE≌△ADF;
    (2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;
    (3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为   .

    20.(6分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧).
    ()求点、点的坐标;
    ()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点.
    ①求证:点是这个新抛物线与直线的唯一交点;
    ②将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围.

    21.(6分)如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.

    22.(8分)已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.
    (1)求∠EAD的余切值;
    (2)求的值.

    23.(8分)计算: .
    24.(10分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.
    (1)求点M到AB的距离;(结果保留根号)
    (2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)
    (参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

    25.(10分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣
    26.(12分) “垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.

    请你根据以上信息,解答下列问题:
    (1)补全上面的条形统计图和扇形统计图;
    (2)所抽取学生“是否随手丢垃圾”情况的众数是   ;
    (3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?
    27.(12分)自学下面材料后,解答问题。
    分母中含有未知数的不等式叫分式不等式。如: <0等。那么如何求出它们的解集呢?
    根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为:
    若a>0,b>0,则>0;若a<0,b<0,则>0;
    若a>0,b<0,则<0;若a<0,b>0,则<0.
    反之:若>0,则 或 ,
    (1)若<0,则___或___.
    (2)根据上述规律,求不等式 >0的解集.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可.
    【详解】
    解:∵x>h时,y随x的增大而增大,当x ∴①若h<1,当时,y随x的增大而增大,
    ∴当x=1时,y取得最小值5,
    可得:,
    解得:h=−1或h=3(舍),
    ∴h=−1;
    ②若h>3,当时,y随x的增大而减小,
    当x=3时,y取得最小值5,
    可得:,
    解得:h=5或h=1(舍),
    ∴h=5,
    ③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,
    ∴此种情况不符合题意,舍去.
    综上所述,h的值为−1或5,
    故选:A.
    【点睛】
    本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键.
    2、B
    【解析】
    分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.
    详解: ∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,
    ∴b>0,
    ∵交点横坐标为1,
    ∴a+b+c=b,
    ∴a+c=0,
    ∴ac<0,
    ∴一次函数y=bx+ac的图象经过第一、三、四象限.
    故选B.
    点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.
    3、A
    【解析】
    方程变形后,配方得到结果,即可做出判断.
    【详解】
    方程,
    变形得:,
    配方得:,即
    故选A.
    【点睛】
    本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.
    4、C
    【解析】
    两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.
    【详解】
    直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;
    直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;
    因此以两条直线l1,l2的交点坐标为解的方程组是:.
    故选C.
    【点睛】
    本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
    5、C
    【解析】
    根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.
    【详解】
    ∵x+2y=5,
    ∴2x+4y=10,
    则2x+4y+1=10+1=1.
    故选C.
    【点睛】
    此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.
    6、B
    【解析】
    设可打x折,则有1200×-800≥800×5%,
    解得x≥1.
    即最多打1折.
    故选B.
    【点睛】
    本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.
    7、B
    【解析】
    根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.
    【详解】
    A选项:4x3•1x1=8x5,故原题计算正确;
    B选项:a4和a3不是同类项,不能合并,故原题计算错误;
    C选项:(-x1)5=-x10,故原题计算正确;
    D选项:(a-b)1=a1-1ab+b1,故原题计算正确;
    故选:B.
    【点睛】
    考查了整式的乘法,关键是掌握整式的乘法各计算法则.
    8、C
    【解析】
    先解不等式组得到-1<x≤3,再找出此范围内的正整数.
    【详解】
    解不等式1-2x<3,得:x>-1,
    解不等式≤2,得:x≤3,
    则不等式组的解集为-1<x≤3,
    所以不等式组的正整数解有1、2、3这3个,
    故选C.
    【点睛】
    本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.
    9、A
    【解析】
    解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圆心O到AB的距离为2.故选A.

    10、B
    【解析】
    解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.

    点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
    11、C
    【解析】
    根据从左边看得到的图形是左视图,可得答案.
    【详解】
    从左边看是三个矩形,中间矩形的左右两边是虚线,
    故选C.
    【点睛】
    本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
    12、D
    【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=,∴S△ABE=×5×=,故选D.

    点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、a≥﹣1.
    【解析】
    根据二次根式的被开方数为非负数,可以得出关于a的不等式,继而求得a的取值范围.
    【详解】
    由分析可得,a+1≥0,
    解得:a≥﹣1.
    【点睛】
    熟练掌握二次根式被开方数为非负数是解答本题的关键.
    14、相等的圆心角所对的弦相等,直径所对的圆周角是直角.
    【解析】
    根据圆内接正四边形的定义即可得到答案.
    【详解】
    到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.
    【点睛】
    本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.
    15、20
    【解析】
    解:连接OB,
    ∵⊙O的直径CD垂直于AB,
    ∴=,
    ∴∠BOC=∠AOC=40°,
    ∴∠BDC=∠AOC=×40°=20°
    16、2.
    【解析】
    根据立方根的定义可得8的立方根为2.
    【点睛】
    本题考查了立方根.
    17、3(a-1)2
    【解析】
    先提公因式,再套用完全平方公式.
    【详解】
    解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.
    【点睛】
    考点:提公因式法与公式法的综合运用.
    18、48°
    【解析】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.
    【详解】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC.
    ∵四边形AKCB内接于圆,
    ∴∠AKC+∠ABC=180°,
    ∵∠ABC=114°,
    ∴∠AKC=66°,
    ∴∠AOC=2∠AKC=132°,
    ∵DA、DC分别切⊙O于A、C两点,
    ∴∠OAD=∠OCB=90°,
    ∴∠ADC+∠AOC=180°,
    ∴∠ADC=48°

    故答案为48°.
    【点睛】
    本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)①30°②见解析(2)BD2+CE2=DE2(3)
    【解析】
    (1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;
    (2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;
    (3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.
    【详解】
    解:(1)①由旋转得,∠FAB=∠CAE,
    ∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,
    ∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;
    ②由旋转知,AF=AE,∠BAF=∠CAE,
    ∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,
    在△ADE和△ADF中,,
    ∴△ADE≌△ADF(SAS);
    (2)BD2+CE2=DE2,
    理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,
    ∴BF=CE,∠ABF=∠ACB,
    由(1)知,△ADE≌△ADF,
    ∴DE=DF,
    ∵AB=AC,∠BAC=90°,
    ∴∠ABC=∠ACB=45°,
    ∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,
    根据勾股定理得,BD2+BF2=DF2,
    即:BD2+CE2=DE2;
    (3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,
    ∴BF=CE,∠ABF=∠ACB,
    由(1)知,△ADE≌△ADF,
    ∴DE=DF,BF=CE=5,
    ∵AB=AC,∠BAC=90°,
    ∴∠ABC=∠ACB=30°,
    ∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,
    过点F作FM⊥BC于M,
    在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,
    BF=5,
    ∴,
    ∵BD=4,
    ∴DM=BD﹣BM=,
    根据勾股定理得, ,
    ∴DE=DF=,
    故答案为.


    【点睛】
    此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.
    20、(1)B(-3,0),C(1,0);(2)①见解析;②≤t≤6.
    【解析】
    (1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y=0,即可得解;
    (2)①根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;
    ②当t=0时,直线与抛物线只有一个交点N(3,-6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1 +t,0),代入直线解析式:y=-4x+6+t,解得t=;最后一个交点是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.
    【详解】
    (1)因为抛物线的顶点为M(-1,-2),所以对称轴为x=-1,可得:,解得:a=,c=,所以抛物线解析式为y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);
    (2)①翻折后的解析式为y=-x2-x,与直线y=-4x+6联立可得:x2-3x+=0,解得:x1=x2=3,所以该一元二次方程只有一个根,所以点N(3,-6)是唯一的交点;
    ②≤t≤6.
    【点睛】
    本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.
    21、(1);(2)1<x<1.
    【解析】
    (1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
    (2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.
    【详解】
    解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),
    ∴n=﹣1+5,解得:n=1,
    ∴点A的坐标为(1,1).
    ∵反比例函数y=(k≠0)过点A(1,1),
    ∴k=1×1=1,
    ∴反比例函数的解析式为y=.
    联立,解得:或,
    ∴点B的坐标为(1,1).
    (2)观察函数图象,发现:
    当1<x<1.时,反比例函数图象在一次函数图象下方,
    ∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.
    【点睛】
    本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.
    22、(1)∠EAD的余切值为;(2)=.
    【解析】
    (1)在Rt△ADB中,根据AB=13,cos∠BAC=,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;
    (2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED, 可知BF=FG=5x,然后可求BF:CF的值.
    【详解】
    (1)∵BD⊥AC,
    ∴∠ADE=90°,
    Rt△ADB中,AB=13,cos∠BAC=,
    ∴AD=5, 由勾股定理得:BD=12,
    ∵E是BD的中点,
    ∴ED=6,
    ∴∠EAD的余切==;
    (2)过D作DG∥AF交BC于G,
    ∵AC=8,AD=5, ∴CD=3,
    ∵DG∥AF,
    ∴=,
    设CD=3x,AD=5x,
    ∵EF∥DG,BE=ED,
    ∴BF=FG=5x,
    ∴==.

    【点睛】
    本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.
    23、10
    【解析】
    【分析】先分别进行0次幂的计算、负指数幂的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可.
    【详解】原式=1+9-+4
    =10-+
    =10.
    【点睛】本题考查了实数的混合运算,涉及到0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.
    24、 (1) ; (2)95m.
    【解析】
    (1)过点M作MD⊥AB于点D,易求AD的长,再由BD=MD可得BD的长,即M到AB的距离;
    (2)过点N作NE⊥AB于点E,易证四边形MDEN为平行四边形,所以ME的长可求出,再根据MN=AB-AD-BE计算即可.
    【详解】
    解:(1)过点M作MD⊥AB于点D,
    ∵MD⊥AB,
    ∴∠MDA=∠MDB=90°,
    ∵∠MAB=60°,∠MBA=45°,
    ∴在Rt△ADM中,;
    在Rt△BDM中,,
    ∴BD=MD=,
    ∵AB=600m,
    ∴AD+BD=600m,
    ∴AD+,
    ∴AD=(300)m,
    ∴BD=MD=(900-300),
    ∴点M到AB的距离(900-300).
    (2)过点N作NE⊥AB于点E,
    ∵MD⊥AB,NE⊥AB,
    ∴MD∥NE,
    ∵AB∥MN,
    ∴四边形MDEN为平行四边形,
    ∴NE=MD=(900-300),MN=DE,
    ∵∠NBA=53°,
    ∴在Rt△NEB中,,
    ∴BEm,
    ∴MN=AB-AD-BE.

    【点睛】
    考查了解直角三角形的应用,通过解直角三角形能解决实际问题中的很多有关测量问题,根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案是解题的关键.
    25、
    【解析】
    原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;
    【详解】
    解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab
    =a2+b2,
    当a=1、b=﹣时,
    原式=12+(﹣)2
    =1+
    =.
    【点睛】
    考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.
    26、 (1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
    【解析】
    (1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;
    (2)根据众数的定义求解即可;
    (3)该年级学生中“经常随手丢垃圾”的学生=总人数×C情况的比值.
    【详解】
    (1)∵被调查的总人数为60÷30%=200人,
    ∴C情况的人数为200﹣(60+130)=10人,B情况人数所占比例为×100%=65%,
    补全图形如下:

    (2)由条形图知,B情况出现次数最多,
    所以众数为B,
    故答案为B.
    (3)1500×5%=75,
    答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
    【点睛】
    本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.
    27、(1) 或;(2)x>2或x<−1.
    【解析】
    (1)根据两数相除,异号得负解答;
    (2)先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.
    【详解】
    (1)若>0,则 或 ;
    故答案为: 或;
    (2)由上述规律可知,不等式转化为或,
    所以,x>2或x<−1.
    【点睛】
    此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.

    相关试卷

    江苏省泰兴市洋思中学2022-2023学年数学七下期末联考模拟试题含答案: 这是一份江苏省泰兴市洋思中学2022-2023学年数学七下期末联考模拟试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件是随机事件的是,已知,下列命题的逆命题,是假命题的是,下列各式中,运算正确的是等内容,欢迎下载使用。

    泰兴市洋思中学2021-2022学年七年级3月月考数学试题(含解析): 这是一份泰兴市洋思中学2021-2022学年七年级3月月考数学试题(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省泰兴市洋思中学2021-2022学年中考数学最后一模试卷含解析: 这是一份江苏省泰兴市洋思中学2021-2022学年中考数学最后一模试卷含解析,共20页。试卷主要包含了下列说法不正确的是,二次函数y=等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map