2022年江苏省泰州民兴中学中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为( )
A.0.6×1010 B.0.6×1011 C.6×1010 D.6×1011
2.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )
A.10 B.14 C.10或14 D.8或10
3.下列运算结果正确的是( )
A.3a﹣a=2 B.(a﹣b)2=a2﹣b2
C.a(a+b)=a2+b D.6ab2÷2ab=3b
4.等腰中,,D是AC的中点,于E,交BA的延长线于F,若,则的面积为( )
A.40 B.46 C.48 D.50
5.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是( )
A.线段PB B.线段BC C.线段CQ D.线段AQ
6.若代数式2x2+3x﹣1的值为1,则代数式4x2+6x﹣1的值为( )
A.﹣3 B.﹣1 C.1 D.3
7.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF
8.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )
A.4 B.5 C.6 D.7
9.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1 B. C. D.
10.已知为单位向量,=,那么下列结论中错误的是( )
A.∥ B. C.与方向相同 D.与方向相反
二、填空题(共7小题,每小题3分,满分21分)
11.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,则a+b+2c__________0(填“>”“=”或“<”).
12.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.
13.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:
①公交车的速度为400米/分钟;
②小刚从家出发5分钟时乘上公交车;
③小刚下公交车后跑向学校的速度是100米/分钟;
④小刚上课迟到了1分钟.
其中正确的序号是_____.
14.因式分解:9x﹣x2=_____.
15.不等式组的整数解是_____.
16.若一组数据1,2,3,的平均数是2,则的值为______.
17.如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_____.
三、解答题(共7小题,满分69分)
18.(10分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
19.(5分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:
(1)在这次研究中,一共调查了多少名学生?
(2)“其他”在扇形统计图中所占的圆心角是多少度?
(3)补全频数分布直方图;
(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.
20.(8分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°= ,cos37°= ,tan37°= )
(1)求把手端点A到BD的距离;
(2)求CH的长.
21.(10分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.
(1)求B点到直线CA的距离;
(2)执法船从A到D航行了多少海里?(结果保留根号)
22.(10分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
排球
10
9.5
9.5
10
8
9
9.5
9
7
10
4
5.5
10
9.5
9.5
10
篮球
9.5
9
8.5
8.5
10
9.5
10
8
6
9.5
10
9.5
9
8.5
9.5
6
整理、描述数据:按如下分数段整理、描述这两组样本数据:
(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
分析数据:两组样本数据的平均数、中位数、众数如下表所示:
项目
平均数
中位数
众数
排球
8.75
9.5
10
篮球
8.81
9.25
9.5
得出结论:
(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)
23.(12分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如表:
x/cm
0
1
2
3
4
5
y/cm
6.0
4.8
4.5
6.0
7.4
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.
24.(14分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
解:将60000000000用科学记数法表示为:6×1.
故选C.
【点睛】
本题考查科学记数法—表示较大的数,掌握科学计数法的一般形式是解题关键.
2、B
【解析】
试题分析: ∵2是关于x的方程x2﹣2mx+3m=0的一个根,
∴22﹣4m+3m=0,m=4,
∴x2﹣8x+12=0,
解得x1=2,x2=1.
①当1是腰时,2是底边,此时周长=1+1+2=2;
②当1是底边时,2是腰,2+2<1,不能构成三角形.
所以它的周长是2.
考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.
3、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
解:A、原式=2a,不符合题意;
B、原式=a2-2ab+b2,不符合题意;
C、原式=a2+ab,不符合题意;
D、原式=3b,符合题意;
故选D
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
4、C
【解析】
∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,
∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,
∴∠ABD=∠ACF,
又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,
∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,
∵BF=AB+AF=12,∴3AF=12,∴AF=4,
∴AB=AC=2AF=8,
∴S△FBC= ×BF×AC=×12×8=48,故选C.
5、C
【解析】
根据三角形高线的定义即可解题.
【详解】
解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,
故选C.
【点睛】
本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.
6、D
【解析】
由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1计算可得.
【详解】
解:∵2x2+1x﹣1=1,
∴2x2+1x=2,
则4x2+6x﹣1=2(2x2+1x)﹣1
=2×2﹣1
=4﹣1
=1.
故本题答案为:D.
【点睛】
本题主要考查代数式的求值,运用整体代入的思想是解题的关键.
7、B
【解析】
【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.
【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;
B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;
C、如图,∵四边形ABCD是平行四边形,∴OA=OC,
∵AF//CE,∴∠FAO=∠ECO,
又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,
∴AF CE,∴四边形AECF是平行四边形,故不符合题意;
D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,
∴∠ABE=∠CDF,
又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,
∴AE//CF,
∴AE CF,∴四边形AECF是平行四边形,故不符合题意,
故选B.
【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.
8、B
【解析】
先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.
【详解】
故选:B.
【点睛】
本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.
9、C
【解析】
分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.
详解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵,
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD﹣AP=1,
∵CG=2、CD=1,
∴DG=1,
则GH=PG=×=,
故选:C.
点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
10、C
【解析】
由向量的方向直接判断即可.
【详解】
解:为单位向量,=,所以与方向相反,所以C错误,
故选C.
【点睛】
本题考查了向量的方向,是基础题,较简单.
二、填空题(共7小题,每小题3分,满分21分)
11、<
【解析】
由抛物线开口向下,则a<0,抛物线与y轴交于y轴负半轴,则c<0,对称轴在y轴左侧,则b<0,因此可判断a+b+2c与0的大小
【详解】
∵抛物线开口向下
∴a<0
∵抛物线与y轴交于y轴负半轴,
∴c<0
∵对称轴在y轴左侧
∴﹣<0
∴b<0
∴a+b+2c<0
故答案为<.
【点睛】
本题考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键.
12、
【解析】
过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD =×OF×BF,即BF:AD=2:5= OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=, 即可得解:k=2 S△OBF=.
【详解】
解:过点B作BF⊥OC于点F,
由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,
∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OA B=S四边形DABF,
∵,
∴,,
∵AD∥BF
∴S△BCF∽S△ACD,
又∵,
∴BF:AD=2:5,
∵S△OAD=S△OBF,
∴×OD×AD =×OF×BF
∴BF:AD=2:5= OD:OF
易证:S△OED∽S△OBF,
∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21
∵S四边形EDFB=,
∴S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=,
∴k=2 S△OBF=.
故答案为.
【点睛】
本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.
13、①②③
【解析】
由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.
【详解】
解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000m,则其速度为2000÷5=400米/分钟,故①正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800÷400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故②正确;公交车一共行驶了2800÷400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟<4分钟,故④错误,再由图可知小明跑步时间为300÷3=100米/分钟,故③正确.
故正确的序号是:①②③.
【点睛】
本题考查了一次函数的应用.
14、x(9﹣x)
【解析】
试题解析:
故答案为
点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.
15、﹣1、0、1
【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.
【详解】
,
解不等式得:,
解不等式得:,
不等式组的解集为,
不等式组的整数解为-1,0,1.
故答案为:-1,0,1.
【点睛】
本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.
16、1
【解析】
根据这组数据的平均数是1和平均数的计算公式列式计算即可.
【详解】
∵数据1,1,3,的平均数是1,
∴,
解得:.
故答案为:1.
【点睛】
本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.
17、
【解析】
由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,从而求得EF的值.
【详解】
∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,
∴∠EOB=∠FOC,
在△BOE和△COF中,,
∴△BOE≌△COF(ASA)
∴BE=FC=2,
同理BF=AE=3,
在Rt△BEF中,BF=3,BE=2,
∴EF==.
故答案为
【点睛】
本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长.
三、解答题(共7小题,满分69分)
18、水坝原来的高度为12米
【解析】
试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.
试题解析:设BC=x米,
在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,
在Rt△EBD中,
∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,
即2+x=4+,解得x=12,即BC=12,
答:水坝原来的高度为12米..
考点:解直角三角形的应用,坡度.
19、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.
【解析】
(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.
【详解】
(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,
∴总调查人数=20÷20%=100人;
(2)参加娱乐的人数=100×40%=40人,
从条形统计图中得出参加阅读的人数为30人,
∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,
在扇形统计图中“其它”类的圆心角=360×10%=36°;
(3)如图
(4)估计一下全校课余爱好是阅读的学生约为3200×=960(人).
【点睛】
本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.
20、(1)12;(2)CH的长度是10cm.
【解析】
(1)、过点A作于点N,过点M作于点Q,根据Rt△AMQ中α的三角函数得出得出AN的长度;
(2)、根据△ANB和△AGC相似得出DN的长度,然后求出BN的长度,最后求出GC的长度,从而得出答案.
【详解】
解:(1)、过点A作于点N,过点M作于点Q.
在中,.
∴,
∴,
∴.
(2)、根据题意:∥.
∴.
∴.
∵,
∴.
∴.
∴.
∴.
答:的长度是10cm .
点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.
21、(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(75﹣25)海里.
【解析】
(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长;
(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长.
【详解】
解:(1)过点B作BH⊥CA交CA的延长线于点H,
∵∠MBC=60°,
∴∠CBA=30°,
∵∠NAD=30°,
∴∠BAC=120°,
∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,
∴BH=BC×sin∠BCA=150×=75(海里).
答:B点到直线CA的距离是75海里;
(2)∵BD=75海里,BH=75海里,
∴DH==75(海里),
∵∠BAH=180°﹣∠BAC=60°,
在Rt△ABH中,tan∠BAH==,
∴AH=25,
∴AD=DH﹣AH=(75﹣25)(海里).
答:执法船从A到D航行了(75﹣25)海里.
【点睛】
本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题.能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键.
22、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
【解析】
根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
【详解】
解:补全表格成绩:
人数
项目
10
排球
1
1
2
7
5
篮球
0
2
1
10
3
达到优秀的人数约为(人);
故答案为130;
同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
【点睛】
本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.
23、(1)2.1;(2)见解析;(3)x=2时,函数有最小值y=4.2
【解析】
(1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;
(2)可在网格图中直接画出函数图象;
(3)由函数图象可知函数的最小值.
【详解】
(1)当点P运动到点H时,AH=3,作HN⊥AB于点N.
∵在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,∴∠HAN=42°,∴AN=HN=AH•sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.
故答案为:2.1;
(2)
(3)根据函数图象可知,当x=2时,函数有最小值y=4.2.
故答案为:4.2.
【点睛】
本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
24、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.
【解析】
(1)设年平均增长率为x,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.
【详解】
(1)设该地投入异地安置资金的年平均增长率为x,根据题意,
得:1280(1+x)2=1280+1600,
解得:x=0.5或x=﹣2.25(舍),
答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;
(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,
得:1000×8×400+(a﹣1000)×5×400≥5000000,
解得:a≥1900,
答:今年该地至少有1900户享受到优先搬迁租房奖励.
考点:一元二次方程的应用;一元一次不等式的应用.
2022年江苏省泰州市高港区达标名校中考数学模拟精编试卷含解析: 这是一份2022年江苏省泰州市高港区达标名校中考数学模拟精编试卷含解析,共24页。
2022年江苏省苏州昆山市石牌中学中考数学模拟精编试卷含解析: 这是一份2022年江苏省苏州昆山市石牌中学中考数学模拟精编试卷含解析,共21页。试卷主要包含了某反比例函数的图象经过点等内容,欢迎下载使用。
2022届江苏省南京市上元中学中考数学模拟精编试卷含解析: 这是一份2022届江苏省南京市上元中学中考数学模拟精编试卷含解析,共19页。