开学活动
搜索
    上传资料 赚现金

    2022年吉林省长春达标名校中考五模数学试题含解析

    2022年吉林省长春达标名校中考五模数学试题含解析第1页
    2022年吉林省长春达标名校中考五模数学试题含解析第2页
    2022年吉林省长春达标名校中考五模数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年吉林省长春达标名校中考五模数学试题含解析

    展开

    这是一份2022年吉林省长春达标名校中考五模数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()

    A. B. C. D.
    2.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是(  )
    ①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2

    A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④
    3.小手盖住的点的坐标可能为( )

    A. B. C. D.
    4.如果a﹣b=5,那么代数式(﹣2)•的值是(  )
    A.﹣ B. C.﹣5 D.5
    5.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )

    A.小明中途休息用了20分钟
    B.小明休息前爬山的平均速度为每分钟70米
    C.小明在上述过程中所走的路程为6600米
    D.小明休息前爬山的平均速度大于休息后爬山的平均速度
    6.如图,是的外接圆,已知,则的大小为  

    A. B. C. D.
    7.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为(  )

    A. B. C. D.
    8.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为(  )

    A. B.π C.2π D.3π
    9.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有(  )

    A.3块 B.4块 C.6块 D.9块
    10.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是(  )

    A.70° B.60° C.55° D.50°
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,点分别在正三角形的三边上,且也是正三角形.若的边长为,的边长为,则的内切圆半径为__________.

    12.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是__________.
    13.因式分解:x2﹣4= .
    14.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是__.
    15.当x为_____时,分式的值为1.
    16.函数y=中,自变量x的取值范围是
    17.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.

    三、解答题(共7小题,满分69分)
    18.(10分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

    19.(5分)解不等式组:并把解集在数轴上表示出来.
    20.(8分)(1)计算:2﹣2﹣+(1﹣)0+2sin60°.
    (2)先化简,再求值:()÷,其中x=﹣1.
    21.(10分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙O相交于点F.若的长为,则图中阴影部分的面积为_____.

    22.(10分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.

    23.(12分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
    (1)概念理解:
    如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
    (1)问题探究:
    如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
    (3)应用拓展:
    如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.

    24.(14分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.

    (1)如图1,当点E在边BC上时,求证DE=EB;
    (2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
    (1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.
    【详解】
    ∵四边形ABCD是菱形,
    ∴CO=AC=3,BO=BD=,AO⊥BO,
    ∴.
    ∴.
    又∵,
    ∴BC·AE=24,
    即.
    故选D.
    点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
    2、B
    【解析】
    首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.
    ∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,
    ∴△ABE≌△DCF,
    ∴∠ABE=∠DCF.
    ∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,
    ∴△ADG≌△CDG,
    ∴∠DAG=∠DCF,
    ∴∠ABE=∠DAG.
    ∵∠DAG+∠BAH=90°,
    ∴∠BAE+∠BAH=90°,
    ∴∠AHB=90°,
    ∴AG⊥BE,故③正确,
    同理可证:△AGB≌△CGB.
    ∵DF∥CB,
    ∴△CBG∽△FDG,
    ∴△ABG∽△FDG,故①正确.
    ∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,
    ∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.
    取AB的中点O,连接OD、OH.

    ∵正方形的边长为4,
    ∴AO=OH=×4=1,
    由勾股定理得,OD=,
    由三角形的三边关系得,O、D、H三点共线时,DH最小,
    DH最小=1-1.
    无法证明DH平分∠EHG,故②错误,
    故①③④⑤正确.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.
    3、B
    【解析】
    根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.
    【详解】
    根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;
    分析选项可得只有B符合.
    故选:B.
    【点睛】
    此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
    4、D
    【解析】
    【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.
    【详解】(﹣2)•
    =
    =
    =a-b,
    当a-b=5时,原式=5,
    故选D.
    5、C
    【解析】
    根据图像,结合行程问题的数量关系逐项分析可得出答案.
    【详解】
    从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;
    小明休息前爬山的平均速度为:(米/分),B正确;
    小明在上述过程中所走的路程为3800米,C错误;
    小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:米/分,D正确.
    故选C.
    考点:函数的图象、行程问题.
    6、A
    【解析】
    解:△AOB中,OA=OB,∠ABO=30°;
    ∴∠AOB=180°-2∠ABO=120°;
    ∴∠ACB=∠AOB=60°;故选A.
    7、A
    【解析】
    过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.
    【详解】
    过O作OC⊥AB于C,过N作ND⊥OA于D,

    ∵N在直线y=x+3上,
    ∴设N的坐标是(x,x+3),
    则DN=x+3,OD=-x,
    y=x+3,
    当x=0时,y=3,
    当y=0时,x=-4,
    ∴A(-4,0),B(0,3),
    即OA=4,OB=3,
    在△AOB中,由勾股定理得:AB=5,
    ∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,
    ∴3×4=5OC,
    OC=,
    ∵在Rt△NOM中,OM=ON,∠MON=90°,
    ∴∠MNO=45°,
    ∴sin45°=,
    ∴ON=,
    在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,
    即(x+3)2+(-x)2=()2,
    解得:x1=-,x2=,
    ∵N在第二象限,
    ∴x只能是-,
    x+3=,
    即ND=,OD=,
    tan∠AON=.
    故选A.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.
    8、A
    【解析】
    根据旋转的性质和弧长公式解答即可.
    【详解】
    解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,
    ∴∠AOC=90°,
    ∵OC=3,
    ∴点A经过的路径弧AC的长== ,
    故选:A.
    【点睛】
    此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.
    9、B
    【解析】
    分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
    解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.
    故选B.
    10、A
    【解析】
    试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.
    考点:平行线的性质.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=(AE+AF-EF)=(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.
    【详解】
    解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,

    ∴AD=AE=[(AB+AC)-(BD+CE)]= [(AB+AC)-(BF+CF)]=(AB+AC-BC),

    如图2,∵△ABC,△DEF都为正三角形,
    ∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
    ∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
    在△AEF和△CFD中,

    ∴△AEF≌△CFD(AAS);
    同理可证:△AEF≌△CFD≌△BDE;
    ∴BE=AF,即AE+AF=AE+BE=a.
    设M是△AEF的内心,过点M作MH⊥AE于H,
    则根据图1的结论得:AH=(AE+AF-EF)=(a-b);
    ∵MA平分∠BAC,
    ∴∠HAM=30°;
    ∴HM=AH•tan30°=(a-b)•=
    故答案为:.
    【点睛】
    本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键.
    12、.
    【解析】
    根据合数定义,用合数的个数除以数的总数即为所求的概率.
    【详解】
    ∵在1,2,3,4,5,6,7,8这八个数中,合数有4、6、8这3个,∴这个数恰好是合数的概率是.
    故答案为:.
    【点睛】
    本题考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到合数的个数是解题的关键.
    13、(x+2)(x-2).
    【解析】试题分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).
    考点:因式分解-运用公式法
    14、m>2
    【解析】
    试题分析:根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣2>2.
    解:因为抛物线y=(m﹣2)x2的开口向上,
    所以m﹣2>2,即m>2,故m的取值范围是m>2.
    考点:二次函数的性质.
    15、2
    【解析】
    分式的值是1的条件是,分子为1,分母不为1.
    【详解】
    ∵3x-6=1,
    ∴x=2,
    当x=2时,2x+1≠1.
    ∴当x=2时,分式的值是1.
    故答案为2.
    【点睛】
    本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.
    16、x≥0且x≠1
    【解析】
    试题分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x-1≠0,解可得答案.
    试题解析:根据题意可得x-1≠0;
    解得x≠1;
    故答案为x≠1.
    考点: 函数自变量的取值范围;分式有意义的条件.
    17、
    【解析】
    解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,
    过点M作MF⊥DC于点F,
    ∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,
    ∴2MD=AD=CD=2,∠FDM=60°,
    ∴∠FMD=30°,
    ∴FD=MD=1,
    ∴FM=DM×cos30°=,
    ∴,
    ∴A′C=MC﹣MA′=.
    故答案为.

    【点评】
    此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
    【解析】
    (1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
    (2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
    【详解】
    解:证明:∵四边形是平行四边形,
    ∴,,.
    ∵点、分别是、的中点,
    ∴,.
    ∴.
    在和中,

    ∴.
    解:当四边形是菱形时,四边形是矩形.

    证明:∵四边形是平行四边形,
    ∴.
    ∵,
    ∴四边形是平行四边形.
    ∵四边形是菱形,
    ∴.
    ∵,
    ∴.
    ∴,.
    ∵,
    ∴.
    ∴.
    即.
    ∴四边形是矩形.
    【点睛】
    本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
    19、不等式组的解集为﹣7<x≤1,将解集表示在数轴上表示见解析.
    【解析】
    试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.
    试题解析:由①得:﹣2x≥﹣2,即x≤1,
    由②得:4x﹣2<5x+5,即x>﹣7,
    所以﹣7<x≤1.
    在数轴上表示为:
    .
    考点:解一元一次不等式组;在数轴上表示不等式的解集.
    点睛:分别求出各不等式的解集,再求出其公共解集即可.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    20、(1) (2)
    【解析】
    (1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;
    (2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
    【详解】
    解:(1)原式=﹣+1+2=﹣+1+=﹣;
    (2)原式=
    =
    =
    =,
    当x=﹣1时,原式==.
    【点睛】
    本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.
    21、S阴影=2﹣.
    【解析】
    由切线的性质和平行四边形的性质得到BA⊥AC,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE,根据弧长公式求出弧长,得到半径,即可求出结果.
    【详解】
    如图,连接AC,∵CD与⊙A相切,
    ∴CD⊥AC,
    在平行四边形ABCD中,∵AB=DC,AB∥CD∥BC,
    ∴BA⊥AC,∵AB=AC,
    ∴∠ACB=∠B=45°,
    ∵AD∥BC,
    ∴∠FAE=∠B=45°,
    ∴∠DAC=∠ACB=45°=∠FAE,

    ∴的长度为
    解得R=2,
    S阴=S△ACD-S扇形=

    【点睛】
    此题主要考查圆内的面积计算,解题的关键是熟知平行四边形的性质、切线的性质、弧长计算及扇形面积的计算.
    22、一次函数解析式为;反比例函数解析式为;.
    【解析】
    (1)根据A(-1,0)代入y=kx+2,即可得到k的值;
    (2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函数得到m的值;
    (3)先根据D(a,0),PD∥y轴,即可得出P(a,2a+2),Q(a,),再根据PQ=2QD,即可得,进而求得D点的坐标.
    【详解】
    (1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,
    ∴一次函数解析式为y=2x+2;
    把C(1,n)代入y=2x+2得n=4,
    ∴C(1,4),
    把C(1,4)代入y=得m=1×4=4,
    ∴反比例函数解析式为y=;
    (2)∵PD∥y轴,
    而D(a,0),
    ∴P(a,2a+2),Q(a,),
    ∵PQ=2QD,
    ∴2a+2﹣=2×,
    整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),
    ∴D(2,0).
    【点睛】
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.
    23、(1)△ABC是“等高底”三角形;(1);(3)CD的值为,1,1.
    【解析】
    (1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.
    (1)点B是的重心,得到设 则
    根据勾股定理可得即可求出它们的比值.
    (3)分两种情况进行讨论:①当时和②当时.
    【详解】
    (1)△ABC是“等高底”三角形;
    理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,

    ∵∠ACB=30°,AC=6,

    ∴AD=BC=3,
    即△ABC是“等高底”三角形;
    (1)如图1,∵△ABC是“等高底”三角形,BC是“等底”,


    ∵△ABC关于BC所在直线的对称图形是 ,
    ∴∠ADC=90°,
    ∵点B是的重心,

    设 则
    由勾股定理得

    (3)①当时,
    Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,

    ∵“等高底”△ABC的“等底”为BC,l1∥l1,l1与l1之间的距离为1,.

    ∴BE=1,即EC=4,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
    ∴∠DCF=45°,

    ∵l1∥l1,

    ∴ 即


    Ⅱ.如图4,此时△ABC等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到,
    ∴是等腰直角三角形,

    ②当时,
    Ⅰ.如图5,此时△ABC是等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,


    Ⅱ.如图6,作于E,则



    ∴△ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,
    ∴∥l1,即直线与l1无交点,
    综上所述,CD的值为
    【点睛】
    属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.
    24、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
    【解析】
    (1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
    (2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
    (1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
    【详解】
    (1)∵△CDE是等边三角形,
    ∴∠CED=60°,
    ∴∠EDB=60°﹣∠B=10°,
    ∴∠EDB=∠B,
    ∴DE=EB;
    (2) ED=EB, 理由如下:
    取AB的中点O,连接CO、EO,
    ∵∠ACB=90°,∠ABC=10°,
    ∴∠A=60°,OC=OA,
    ∴△ACO为等边三角形,
    ∴CA=CO,
    ∵△CDE是等边三角形,
    ∴∠ACD=∠OCE,
    ∴△ACD≌△OCE,
    ∴∠COE=∠A=60°,
    ∴∠BOE=60°,
    ∴△COE≌△BOE,
    ∴EC=EB,
    ∴ED=EB;
    (1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
    ∴∠COE=∠A=60°,
    ∴∠BOE=60°,△COE≌△BOE,
    ∴EC=EB,
    ∴ED=EB,
    ∵EH⊥AB,
    ∴DH=BH=1,
    ∵GE∥AB,
    ∴∠G=180°﹣∠A=120°,
    ∴△CEG≌△DCO,
    ∴CG=OD,
    设CG=a,则AG=5a,OD=a,
    ∴AC=OC=4a,
    ∵OC=OB,
    ∴4a=a+1+1,
    解得,a=2,
    即CG=2.


    相关试卷

    吉林省长春市双阳区重点达标名校2022年中考适应性考试数学试题含解析:

    这是一份吉林省长春市双阳区重点达标名校2022年中考适应性考试数学试题含解析,共19页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    吉林省长春市宽城区市级名校2022年中考数学五模试卷含解析:

    这是一份吉林省长春市宽城区市级名校2022年中考数学五模试卷含解析,共21页。试卷主要包含了计算3–,下列运算正确的是等内容,欢迎下载使用。

    吉林省长春市教研室重点达标名校2022年中考数学四模试卷含解析:

    这是一份吉林省长春市教研室重点达标名校2022年中考数学四模试卷含解析,共18页。试卷主要包含了已知∠BAC=45等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map