2022年湖南长沙市浏阳中考数学最后一模试卷含解析
展开
这是一份2022年湖南长沙市浏阳中考数学最后一模试卷含解析,共24页。试卷主要包含了如图1是一座立交桥的示意图,下列调查中适宜采用抽样方式的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.6 B.8 C.10 D.12
2.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
A. B.1 C. D.
3.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )
A. B. C. D.
4.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为( )
A.x>2 B.0<x<4
C.﹣1<x<4 D.x<﹣1 或 x>4
5.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
6.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且,,所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是( )
A.甲车在立交桥上共行驶8s B.从F口出比从G口出多行驶40m C.甲车从F口出,乙车从G口出 D.立交桥总长为150m
7.在平面直角坐标系中,将点 P (﹣4,2)绕原点O 顺时针旋转 90°,则其对应点Q 的坐标为( )
A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)
8.方程5x+2y=-9与下列方程构成的方程组的解为的是( )
A.x+2y=1 B.3x+2y=-8
C.5x+4y=-3 D.3x-4y=-8
9.下列调查中适宜采用抽样方式的是( )
A.了解某班每个学生家庭用电数量 B.调查你所在学校数学教师的年龄状况
C.调查神舟飞船各零件的质量 D.调查一批显像管的使用寿命
10.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于( )
A.25:24 B.16:15 C.5:4 D.4:3
11.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为( )米.
A.25×10﹣7 B.2.5×10﹣6 C.0.25×10﹣5 D.2.5×10﹣5
12.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为( )
A.米 B.30sinα米 C.30tanα米 D.30cosα米
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.
其中正确的是______.(填序号)
14.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b2-4ac<1;②当x>-1时y随x增大而减小;③a+b+c<1;④若方程ax2+bx+c-m=1没有实数根,则m>2; ⑤3a+c<1.其中,正确结论的序号是________________.
15.因式分解:x2y-4y3=________.
16.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于_____.
17.若代数式的值为零,则x=_____.
18.如图,AC是以AB为直径的⊙O的弦,点D是⊙O上的一点,过点D作⊙O的切线交直线AC于点E,AD平分∠BAE,若AB=10,DE=3,则AE的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.
(1)若m是方程的一个实数根,求m的值;
(2)若m为负数,判断方程根的情况.
20.(6分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:
(1)甲,乙两组工作一天,商店各应付多少钱?
(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?
(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)
21.(6分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.
(1)求证:∠F=∠B;
(2)若AB=12,BG=10,求AF的长.
22.(8分)已知:如图,在半径为2的扇形中,°,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结.
(1)若C是半径OB中点,求的正弦值;
(2)若E是弧AB的中点,求证:;
(3)联结CE,当△DCE是以CD为腰的等腰三角形时,求CD的长.
23.(8分)(1)化简:
(2)解不等式组.
24.(10分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点 C的对应点 C′恰好落在CB的延长线上,边AB交边 C′D′于点E.
(1)求证:BC=BC′;
(2)若 AB=2,BC=1,求AE的长.
25.(10分)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A,过点P(1,m)作直线PA⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP.
(I)当m=3时,求点A的坐标及BC的长;
(II)当m>1时,连接CA,若CA⊥CP,求m的值;
(III)过点P作PE⊥PC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标.
26.(12分) (1)解方程组
(2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.
27.(12分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
连接AD,MA
∵△ABC是等腰三角形,点D是BC边上的中点
∴
∴
解得
∵EF是线段AC的垂直平分线
∴点A关于直线EF的对称点为点C
∴
∵
∴AD的长为BM+MD的最小值
∴△CDM的周长最短
故选:C.
【点睛】
本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.
2、A
【解析】
【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.
【详解】x(x+1)+ax=0,
x2+(a+1)x=0,
由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,
解得:a1=a2=-1,
故选A.
【点睛】本题考查一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
3、A
【解析】
试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,
∴这个斜坡的水平距离为:=10m,
∴这个斜坡的坡度为:50:10=5:1.
故选A.
点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.
4、C
【解析】
看两函数交点坐标之间的图象所对应的自变量的取值即可.
【详解】
∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),
∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,
故选C.
【点睛】
本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
5、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
解:由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故选:B.
【点睛】
本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算.
6、C
【解析】
分析:结合2个图象分析即可.
详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.
B.3段弧的长度都是:从F口出比从G口出多行驶40m,正确.
C.分析图2可知甲车从G口出,乙车从F口出,故错误.
D.立交桥总长为:故正确.
故选C.
点睛:考查图象问题,观察图象,读懂图象是解题的关键.
7、A
【解析】
首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.
【详解】
作图如下,
∵∠MPO+∠POM=90°,∠QON+∠POM=90°,
∴∠MPO=∠QON,
在△PMO和△ONQ中,
∵ ,
∴△PMO≌△ONQ,
∴PM=ON,OM=QN,
∵P点坐标为(﹣4,2),
∴Q点坐标为(2,4),
故选A.
【点睛】
此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.
8、D
【解析】
试题分析:将x与y的值代入各项检验即可得到结果.
解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.
故选D.
点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
9、D
【解析】
根据全面调查与抽样调查的特点对各选项进行判断.
【详解】
解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.
故选:D.
【点睛】
本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
10、A
【解析】
先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.
【详解】
∵∠1=∠2,∠3=∠4,
∴∠2+∠3=90°,
∴∠HEF=90°,
同理四边形EFGH的其它内角都是90°,
∴四边形EFGH是矩形,
∴EH=FG(矩形的对边相等),
又∵∠1+∠4=90°,∠4+∠5=90°,
∴∠1=∠5(等量代换),
同理∠5=∠7=∠8,
∴∠1=∠8,
∴Rt△AHE≌Rt△CFG,
∴AH=CF=FN,
又∵HD=HN,
∴AD=HF,
在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF==5,
又∵HE•EF=HF•EM,
∴EM=,
又∵AE=EM=EB(折叠后A、B都落在M点上),
∴AB=2EM=,
∴AD:AB=5:==25:1.
故选A
【点睛】
本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.
11、B
【解析】
由科学计数法的概念表示出0.0000025即可.
【详解】
0.0000025=2.5×10﹣6.
故选B.
【点睛】
本题主要考查科学计数法,熟记相关概念是解题关键.
12、C
【解析】
试题解析:在Rt△ABO中,
∵BO=30米,∠ABO为α,
∴AO=BOtanα=30tanα(米).
故选C.
考点:解直角三角形的应用-仰角俯角问题.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、①②④
【解析】
①根据旋转得到,对应角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判断
②由旋转得出AD=AF, ∠DAE=∠EAF,及公共边即可证明
③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°两个条件,无法证明
④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE1+BF1=EF1,等量代换后判定④正确
【详解】
由旋转,可知:∠CAD=∠BAF.
∵∠BAC=90°,∠DAE=45°,
∴∠CAD+∠BAE=45°,
∴∠BAF+∠BAE=∠EAF=45°,结论①正确;
②由旋转,可知:AD=AF
在△AED和△AEF中,
∴△AED≌△AEF(SAS),结论②正确;
③在△ABE∽△ACD中,只有AB=AC,、∠ABE=∠ACD=45°两个条件,
无法证出△ABE∽△ACD,结论③错误;
④由旋转,可知:CD=BF,∠ACD=∠ABF=45°,
∴∠EBF=∠ABE+∠ABF=90°,
∴BF1+BE1=EF1.
∵△AED≌△AEF,
EF=DE,
又∵CD=BF,
∴BE1+DC1=DE1,结论④正确.
故答案为:①②④
【点睛】
本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理是解题的关键
14、②③④⑤
【解析】
试题解析:∵二次函数与x轴有两个交点,
∴b2-4ac>1,故①错误,
观察图象可知:当x>-1时,y随x增大而减小,故②正确,
∵抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,
∴x=1时,y=a+b+c<1,故③正确,
∵当m>2时,抛物线与直线y=m没有交点,
∴方程ax2+bx+c-m=1没有实数根,故④正确,
∵对称轴x=-1=-,
∴b=2a,
∵a+b+c<1,
∴3a+c<1,故⑤正确,
故答案为②③④⑤.
15、y(x++2y)(x-2y)
【解析】
首先提公因式,再利用平方差进行分解即可.
【详解】
原式.
故答案是:y(x+2y)(x-2y).
【点睛】
考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
16、1
【解析】
由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.
【详解】
解:∵四边形ABCD是平行四边形,
∴BC∥AD、BC=AD,
而CE=2EB,
∴△AFD∽△CFE,且它们的相似比为3:2,
∴S△AFD:S△EFC=()2,
而S△AFD=9,
∴S△EFC=1.
故答案为1.
【点睛】
此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.
17、3
【解析】
由题意得,=0,解得:x=3,经检验的x=3是原方程的根.
18、1或9
【解析】
(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示
∵OD=OA,
∴∠OAD=∠ODA,
∵AD平分∠BAE,
∴∠OAD=∠ODA=∠DAC,
∴OD//AE,
∵DE是圆的切线,
∴DE⊥OD,
∴∠ODE=∠E=90o,
∴四边形ODEF是矩形,
∴OF=DE,EF=OD=5,
又∵OF⊥AC,
∴AF=,
∴AE=AF+EF=5+4=9.
(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示
同(1)可得:EF=OD=5,OF=DE=3,
在直角三角形AOF中,AF=,
∴AE=EF-AF=5-4=1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) ; (2)方程有两个不相等的实根.
【解析】
分析:(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;
(2)计算方程根的判别式,判断判别式的符号即可.
详解:
(1)∵m是方程的一个实数根,
∴m2-(2m-3)m+m2+1=1,
∴m=−;
(2)△=b2-4ac=-12m+5,
∵m<1,
∴-12m>1.
∴△=-12m+5>1.
∴此方程有两个不相等的实数根.
点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
20、(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少;(3)甲乙合作施工更有利于商店.
【解析】
(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,根据总费用与时间的关系建立方程组求出其解即可;
(2)由甲乙单独完成需要的时间,再结合(1)求出甲、乙两组单独完成的费用进行比较就可以得出结论;
(3)先比较甲、乙单独装修的时间和费用谁对商店经营有利,再比较合作装修与甲单独装修对商店的有利经营情况,从而可以得出结论.
【详解】
解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.
由题意得:
解得:
答:甲、乙两组工作一天,商店各应付300元和140元
(2)单独请甲组需要的费用:300×12=3600元.
单独请乙组需要的费用:24×140=3360元.
答:单独请乙组需要的费用少.
(3)请两组同时装修,理由:
甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;
乙单独做,需费用3360元,少赢利200X24=4800元,相当于损失8160元;
甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;
因为5120
相关试卷
这是一份2023年湖南省长沙市浏阳市中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南省长沙市怡雅校2022年中考数学最后一模试卷含解析,共27页。试卷主要包含了化简的结果为等内容,欢迎下载使用。
这是一份2022年湖南省长沙市浏阳市浏阳河中学中考五模数学试题含解析,共18页。试卷主要包含了下列事件是必然事件的是,估计-1的值在等内容,欢迎下载使用。