|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年湖南省浏阳市浏阳河中学中考联考数学试卷含解析
    立即下载
    加入资料篮
    2022年湖南省浏阳市浏阳河中学中考联考数学试卷含解析01
    2022年湖南省浏阳市浏阳河中学中考联考数学试卷含解析02
    2022年湖南省浏阳市浏阳河中学中考联考数学试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖南省浏阳市浏阳河中学中考联考数学试卷含解析

    展开
    这是一份2022年湖南省浏阳市浏阳河中学中考联考数学试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中是有理数的是,若=1,则符合条件的m有,如图所示,有一条线段是.,比较4,,的大小,正确的是,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )

    A. B. C. D.
    2.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为( )
    A. B. C. D.
    3.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是(  )
    A. B. C. D.
    4.下列各数中是有理数的是(  )
    A.π B.0 C. D.
    5.若=1,则符合条件的m有(  )
    A.1个 B.2个 C.3个 D.4个
    6.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了(  )

    A.25本 B.20本 C.15本 D.10本
    7.如图所示,有一条线段是()的中线,该线段是( ).

    A.线段GH B.线段AD C.线段AE D.线段AF
    8.比较4,,的大小,正确的是(  )
    A.4<< B.4<<
    C.<4< D.<<4
    9.在平面直角坐标系中,二次函数y=a(x–h)2+k(a<0)的图象可能是
    A. B.
    C. D.
    10.下列计算正确的是(  )
    A.x2x3=x6 B.(m+3)2=m2+9
    C.a10÷a5=a5 D.(xy2)3=xy6
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是_____.
    12.一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_______________
    13.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.

    (以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
    请根据上图完成这个推论的证明过程.
    证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),
    S矩形EBMF=S△ABC-(______________+______________).
    易知,S△ADC=S△ABC,______________=______________,______________=______________.
    可得S矩形NFGD=S矩形EBMF.
    14.函数y=的自变量x的取值范围是_____.
    15.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于_____.
    16.半径是6cm的圆内接正三角形的边长是_____cm.
    三、解答题(共8题,共72分)
    17.(8分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
    (1)甲、乙两工程队每天能改造道路的长度分别是多少米?
    (2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
    18.(8分)在平面直角坐标系 xOy 中,抛物线 y=ax2﹣4ax+3a﹣2(a≠0)与 x轴交于 A,B 两(点 A 在点 B 左侧).
    (1)当抛物线过原点时,求实数 a 的值;
    (2)①求抛物线的对称轴;
    ②求抛物线的顶点的纵坐标(用含 a 的代数式表示);
    (3)当 AB≤4 时,求实数 a 的取值范围.
    19.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.
    (1)求证:直线CE是⊙O的切线.
    (2)若BC=3,CD=3,求弦AD的长.

    20.(8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
    21.(8分)问题提出
    (1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB   ∠ACB(填“>”“<”“=”);
    问题探究
    (2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;
    问题解决
    (3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.

    22.(10分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:

    根据以上统计图,解答下列问题:本次接受调查的市民共有  人;扇形统计图中,扇形B的圆心角度数是  ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.
    23.(12分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
    运动项目

    频数(人数)

    羽毛球

    30

    篮球



    乒乓球

    36

    排球



    足球

    12


    请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?
    24.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.

    (1)求证:直线FG是⊙O的切线;
    (2)若AC=10,cosA=,求CG的长.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,
    故选C.
    2、C
    【解析】
    试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.
    考点:用科学计数法计数
    3、D
    【解析】
    根据轴对称图形的概念求解.
    【详解】
    解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.
    故选D.
    【点睛】
    本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形
    4、B
    【解析】
    【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.
    【详解】A、π是无限不循环小数,属于无理数,故本选项错误;
    B、0是有理数,故本选项正确;
    C、是无理数,故本选项错误;
    D、是无理数,故本选项错误,
    故选B.
    【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.
    5、C
    【解析】
    根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.
    【详解】
    =1
    m2-9=0或m-2= 1
    即m= 3或m=3,m=1
    m有3个值
    故答案选C.
    【点睛】
    本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.
    6、C
    【解析】
    设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可.
    【详解】
    解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,
    根据题意,得:,
    解得:,
    答:甲种笔记本买了25本,乙种笔记本买了15本.
    故选C.
    【点睛】
    本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键.
    7、B
    【解析】
    根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.
    【详解】
    根据三角形中线的定义知:线段AD是△ABC的中线.
    故选B.
    【点睛】
    本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
    8、C
    【解析】
    根据4=<且4=>进行比较
    【详解】
    解:易得:4=<且4=>,
    所以<4<
    故选C.
    【点睛】
    本题主要考查开平方开立方运算。
    9、B
    【解析】
    根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.
    【详解】
    二次函数y=a(x﹣h)2+k(a<0)
    二次函数开口向下.即B成立.
    故答案选:B.
    【点睛】
    本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.
    10、C
    【解析】
    根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.
    【详解】
    x2•x3=x5,故选项A不合题意;
    (m+3)2=m2+6m+9,故选项B不合题意;
    a10÷a5=a5,故选项C符合题意;
    (xy2)3=x3y6,故选项D不合题意.
    故选:C.
    【点睛】
    本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
    【详解】
    画树状图如下:

    由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,
    所以两次都摸到红球的概率是,
    故答案为.
    【点睛】
    此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
    12、1
    【解析】
    设这个正多边的外角为x°,则内角为5x°,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.
    【详解】
    设这个正多边的外角为x°,由题意得:
    x+5x=180,
    解得:x=30,
    360°÷30°=1.
    故答案为:1.
    【点睛】
    此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.
    13、S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC
    【解析】
    根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.
    【详解】
    S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-( S△ANF+S△FCM).
    易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,
    可得S矩形NFGD=S矩形EBMF.
    故答案分别为 S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.
    【点睛】
    本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.
    14、x≥﹣且x≠1
    【解析】
    分析:根据被开方数大于等于0,分母不等于0列式求解即可.
    详解:根据题意得2x+1≥0,x-1≠0,
    解得x≥-且x≠1.
    故答案为x≥-且x≠1.
    点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.
    15、5+3或5+5 .
    【解析】
    分两种情况讨论:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为5+3或5+5.
    【详解】
    由题意可知,存在以下两种情况:
    (1)当一条直角边是另一条直角边的一半时,这个直角三角形是半高三角形,此时设较短的直角边为a,则较长的直角边为2a,由勾股定理可得:,解得:,
    ∴此时较短的直角边为,较长的直角边为,
    ∴此时直角三角形的周长为:;
    (2)当斜边上的高是斜边的一半是,这个直角三角形是半高三角形,此时设两直角边分别为x、y,
    这有题意可得:①,②S△=,
    ∴③,
    由①+③得:,即,
    ∴,
    ∴此时这个直角三角形的周长为:.
    综上所述,这个半高直角三角形的周长为:或.
    故答案为或.
    【点睛】
    (1)读懂题意,弄清“半高三角形”的含义是解题的基础;(2)根据题意,若直角三角形是“半高三角形”,则存在两种情况:①一条直角边是另一条直角边的一半;②斜边上的高是斜边的一半;解题时这两种情况都要讨论,不要忽略了其中一种.
    16、6
    【解析】
    根据题意画出图形,作出辅助线,利用垂径定理及等边三角形的性质解答即可.
    【详解】
    如图所示,OB=OA=6,

    ∵△ABC是正三角形,
    由于正三角形的中心就是圆的圆心,
    且正三角形三线合一,
    所以BO是∠ABC的平分线;
    ∠OBD=60°×=30°,
    BD=cos30°×6=6×=3;
    根据垂径定理,BC=2×BD=6,
    故答案为6.
    【点睛】
    本题主要考查了正多边形和圆,正三角形的性质,熟练掌握等边三角形的性质是解题的关键,根据圆的内接正三角形的特点,求出内心到每个顶点的距离,可求出内接正三角形的边长.

    三、解答题(共8题,共72分)
    17、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.
    【解析】
    (1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
    【详解】
    (1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,
    根据题意得:,
    解得:x=40,
    经检验,x=40是原分式方程的解,且符合题意,
    ∴x=×40=60,
    答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;
    (2)设安排甲队工作m天,则安排乙队工作天,
    根据题意得:7m+5×≤145,
    解得:m≥10,
    答:至少安排甲队工作10天.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
    18、(1)a=;(2)①x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)a 的范围为 a<﹣2 或 a≥.
    【解析】
    (1)把原点坐标代入 y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把抛物线解析式配成顶点式,即可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设 A(m,1),B(n,1),利用抛物线与 x 轴的交点问题,则 m、n 为方程 ax2﹣4ax+3a﹣2=1 的两根,利用判别式的意义解得 a>1 或 a<﹣2,再利用根与系数的关系得到 m+n=4,mn= ,然后根据完全平方公式利用 n﹣m≤4 得到(m+n)2﹣4mn≤16,所以 42﹣4•≤16,接着解关于a 的不等式,最后确定a的范围.
    【详解】
    (1)把(1,1)代入 y=ax2﹣4ax+3a﹣2 得 3a﹣2=1,解得 a=;
    (2)①y=a(x﹣2)2﹣a﹣2, 抛物线的对称轴为直线 x=2;
    ②抛物线的顶点的纵坐标为﹣a﹣2;
    (3)设 A(m,1),B(n,1),
    ∵m、n 为方程 ax2﹣4ax+3a﹣2=1 的两根,
    ∴△=16a2﹣4a(3a﹣2)>1,解得 a>1 或 a<﹣2,
    ∴m+n=4,mn=, 而 n﹣m≤4,
    ∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,
    ∴42﹣4• ≤16,
    即≥1,解得 a≥或 a<1.
    ∴a 的范围为 a<﹣2 或 a≥.
    【点睛】
    本题考查了抛物线与 x 轴的交点:把求二次函数 y=ax2+bx+c(a,b,c 是常数,a≠1)与 x 轴的交点坐标问题转化为解关于 x 的一元二次方程.也考查了二次函数的性质.
    19、(1)证明见解析(2)
    【解析】
    (1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;
    (2)由△CDB∽△CAD,可得,推出CD2=CB•CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,设BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.
    【详解】
    (1)证明:连结OC,如图,

    ∵AD平分∠EAC,
    ∴∠1=∠3,
    ∵OA=OD,
    ∴∠1=∠2,
    ∴∠3=∠2,
    ∴OD∥AE,
    ∵AE⊥DC,
    ∴OD⊥CE,
    ∴CE是⊙O的切线;
    (2)∵∠CDO=∠ADB=90°,
    ∴∠2=∠CDB=∠1,∵∠C=∠C,
    ∴△CDB∽△CAD,
    ∴,
    ∴CD2=CB•CA,
    ∴(3)2=3CA,
    ∴CA=6,
    ∴AB=CA﹣BC=3,,设BD=k,AD=2k,
    在Rt△ADB中,2k2+4k2=5,
    ∴k=,
    ∴AD=.
    20、(1)(2)
    【解析】
    试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;
    (2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.
    试题解析:解:(1).
    (2)用表格列出所有可能的结果:
    第二次
    第一次

    红球1

    红球2

    白球

    黑球

    红球1



    (红球1,红球2)

    (红球1,白球)

    (红球1,黑球)

    红球2

    (红球2,红球1)



    (红球2,白球)

    (红球2,黑球)

    白球

    (白球,红球1)

    (白球,红球2)



    (白球,黑球)

    黑球

    (黑球,红球1)

    (黑球,红球2)

    (黑球,白球)



    由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.
    ∴P(两次都摸到红球)==.
    考点:概率统计
    21、(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)4米.
    【解析】
    (1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小
    (2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;
    (3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.
    【详解】
    解:(1)∠AEB>∠ACB,理由如下:

    如图1,过点E作EF⊥AB于点F,
    ∵在矩形ABCD中,AB=2AD,E为CD中点,
    ∴四边形ADEF是正方形,
    ∴∠AEF=45°,
    同理,∠BEF=45°,
    ∴∠AEB=90°.
    而在直角△ABC中,∠ABC=90°,
    ∴∠ACB<90°,
    ∴∠AEB>∠ACB.
    故答案为:>;
    (2)当点P位于CD的中点时,∠APB最大,理由如下:
    假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,

    在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,
    ∵∠AFB是△EFB的外角,
    ∴∠AFB>∠AEB,
    ∵∠AFB=∠APB,
    ∴∠APB>∠AEB,
    故点P位于CD的中点时,∠APB最大:
    (3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,

    以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,
    由题意知DP=OQ=,
    ∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,
    BD=11.6米, AB=3米,CD=EF=1.6米,
    ∴OA=11.6+3﹣1.6=13米,
    ∴DP=米,
    即小刚与大楼AD之间的距离为4米时看广告牌效果最好.
    【点睛】
    本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.
    22、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.
    【解析】
    (1)根据D组人数以及百分比计算即可.
    (2)根据圆心角度数=360°×百分比计算即可.
    (3)求出A,C两组人数画出条形图即可.
    (4)利用样本估计总体的思想解决问题即可.
    【详解】
    (1)本次接受调查的市民共有:50÷25%=1(人),
    故答案为1.
    (2)扇形统计图中,扇形B的圆心角度数=360°×=43.2°;
    故答案为:43.2°
    (3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).
    条形统计图如图所示:

    (4)15×40%=6(万人).
    答:估计乘公交车上班的人数为6万人.
    【点睛】
    本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    23、 (1)24,1;(2) 54;(3)360.
    【解析】
    (1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;
    (2)利用360°乘以对应的百分比即可求得;
    (3)求得全校总人数,然后利用总人数乘以对应的百分比求解.
    【详解】
    (1)抽取的人数是36÷30%=120(人),
    则a=120×20%=24,
    b=120﹣30﹣24﹣36﹣12=1.
    故答案是:24,1;
    (2)“排球”所在的扇形的圆心角为360°×=54°,
    故答案是:54;
    (3)全校总人数是120÷10%=1200(人),
    则选择参加乒乓球运动的人数是1200×30%=360(人).
    24、(3)证明见试题解析;(3)3.
    【解析】
    试题分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直线FG是⊙O的切线.
    (3)先得出△ODF∽△AGF,再由cosA=,得出cos∠DOF=;然后求出OF、AF的值,即可求出AG、CG的值.
    试题解析:(3)如图3,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半径,∴直线FG是⊙O的切线;
    (3)如图3,∵AB=AC=30,AB是⊙O的直径,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴,∵cosA=,∴cos∠DOF=,∴OF===,∴AF=AO+OF==,∴,解得AG=7,∴CG=AC﹣AG=30﹣7=3,即CG的长是3.

    考点:3.切线的判定;3.相似三角形的判定与性质;3.综合题.

    相关试卷

    湖南省长沙市浏阳市浏阳河中学2023-2024学年数学九上期末质量检测模拟试题含答案: 这是一份湖南省长沙市浏阳市浏阳河中学2023-2024学年数学九上期末质量检测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,抛物线与坐标轴的交点个数是等内容,欢迎下载使用。

    2023-2024学年湖南省浏阳市浏阳河中学九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年湖南省浏阳市浏阳河中学九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    湖南省浏阳市浏阳河中学2023-2024学年八上数学期末调研试题含答案: 这是一份湖南省浏阳市浏阳河中学2023-2024学年八上数学期末调研试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知函数和,当时,的取值范围是,计算,下列各点中,位于第四象限的点是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map