终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届北京师大附中中考数学猜题卷含解析

    立即下载
    加入资料篮
    2022届北京师大附中中考数学猜题卷含解析第1页
    2022届北京师大附中中考数学猜题卷含解析第2页
    2022届北京师大附中中考数学猜题卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届北京师大附中中考数学猜题卷含解析

    展开

    这是一份2022届北京师大附中中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算结果是x5的为,若a与5互为倒数,则a=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b0;④2c–3bn(an+b)(n≠1),其中正确的结论有( )

    A.2个 B.3个 C.4个 D.5个
    2.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:

    转盘总次数
    10
    20
    30
    50
    100
    150
    180
    240
    330
    450
    “和为7”出现频数
    2
    7
    10
    16
    30
    46
    59
    81
    110
    150
    “和为7”出现频率
    0.20
    0.35
    0.33
    0.32
    0.30
    0.30
    0.33
    0.34
    0.33
    0.33
    如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )
    A.0.33 B.0.34 C.0.20 D.0.35
    3.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点 A′恰好落在 BC 边的延长线上,下列结论错误的是( )

    A.∠BCB′=∠ACA′ B.∠ACB=2∠B
    C.∠B′CA=∠B′AC D.B′C 平分∠BB′A′
    4.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为( )

    A.米 B.30sinα米 C.30tanα米 D.30cosα米
    5.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是(  )

    A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”
    B.从一副扑克牌中任意抽取一张,这张牌是“红色的”
    C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”
    D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6
    6.下列博物院的标识中不是轴对称图形的是( )
    A. B.
    C. D.
    7.下列计算结果是x5的为(  )
    A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
    8.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有(  )

    A.1对 B.2对 C.3对 D.4对
    9.若a与5互为倒数,则a=( )
    A. B.5 C.-5 D.
    10.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )

    A.125° B.75° C.65° D.55°
    二、填空题(共7小题,每小题3分,满分21分)
    11.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=_____.
    12.64的立方根是_______.
    13.如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为_____.

    14.因式分解:x2﹣3x+(x﹣3)=_____.
    15.﹣|﹣1|=______.
    16.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm1,S△BQC=15cm1,则图中阴影部分的面积为_____cm1.

    17.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______

    三、解答题(共7小题,满分69分)
    18.(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
    本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.
    19.(5分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.

    20.(8分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.
    21.(10分)观察下列各个等式的规律:
    第一个等式:=1,第二个等式: =2,第三个等式:=3…
    请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.
    22.(10分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.

    23.(12分)如图,在四边形ABCD中,∠A=∠BCD=90°,,CE⊥AD于点E.

    (1)求证:AE=CE;
    (2)若tanD=3,求AB的长.
    24.(14分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:

    请根据以上统计图提供的信息,解答下列问题:
    (1)共抽取   名学生进行问卷调查;
    (2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;
    (3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.
    (4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    ①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣ =1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.
    【详解】
    ①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;
    ②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;
    ③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;
    ④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;
    ⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.
    ∴③④⑤正确.
    故选B.
    【点睛】
    本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.
    2、A
    【解析】
    根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.
    【详解】
    由表中数据可知,出现“和为7”的概率为0.33.
    故选A.
    【点睛】
    本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
    3、C
    【解析】
    根据旋转的性质求解即可.
    【详解】
    解:根据旋转的性质,A:∠与∠均为旋转角,故∠=∠,故A正确;
    B:,,

    ,

    ,故B正确;
    D:,
    B′C平分∠BB′A′,故D正确.
    无法得出C中结论,
    故答案:C.
    【点睛】
    本题主要考查三角形旋转后具有的性质,注意灵活运用各条件
    4、C
    【解析】
    试题解析:在Rt△ABO中,
    ∵BO=30米,∠ABO为α,
    ∴AO=BOtanα=30tanα(米).
    故选C.
    考点:解直角三角形的应用-仰角俯角问题.
    5、D
    【解析】
    根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.
    【详解】
    根据图中信息,某种结果出现的频率约为0.16,
    在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,
    从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,
    掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,
    掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,
    故选D.
    【点睛】
    本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
    6、A
    【解析】
    如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.
    【详解】
    A、不是轴对称图形,符合题意;
    B、是轴对称图形,不合题意;
    C、是轴对称图形,不合题意;
    D、是轴对称图形,不合题意;
    故选:A.
    【点睛】
    此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误
    7、C
    【解析】解:A.x10÷x2=x8,不符合题意;
    B.x6﹣x不能进一步计算,不符合题意;
    C.x2x3=x5,符合题意;
    D.(x3)2=x6,不符合题意.
    故选C.
    8、C
    【解析】
    ∵∠ACB=90°,CD⊥AB,
    ∴△ABC∽△ACD,
    △ACD∽CBD,
    △ABC∽CBD,
    所以有三对相似三角形.
    故选C.
    9、A
    【解析】
    分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.
    详解:根据题意可得:5a=1,解得:a=, 故选A.
    点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.
    10、D
    【解析】
    延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.
    【详解】
    延长CB,延长CB,
    ∵AD∥CB,
    ∴∠1=∠ADE=145,
    ∴∠DBC=180−∠1=180−125=55.
    故答案选:D.
    【点睛】
    本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.
    【详解】
    解:∵,
    ∴∠A=60°,
    ∴.
    故答案为.
    【点睛】
    本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.
    12、4.
    【解析】
    根据立方根的定义即可求解.
    【详解】
    ∵43=64,
    ∴64的立方根是4
    故答案为4
    【点睛】
    此题主要考查立方根的定义,解题的关键是熟知立方根的定义.
    13、
    【解析】
    分析:过点D作DGAB于点G.根据折叠性质,可得AE=DE=2,AF=DF,CE=1,
    在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由锐角三角函数求得,;
    设AF=DF=x,则FG= ,在Rt△DFG中,根据勾股定理得方程=,解得,从而求得.的值
    详解:
    如图所示,过点D作DGAB于点G.

    根据折叠性质,可知△AEF△DEF,
    ∴AE=DE=2,AF=DF,CE=AC-AE=1,
    在Rt△DCE中,由勾股定理得,
    ∴DB=;
    在Rt△ABC中,由勾股定理得;
    在Rt△DGB中,,;
    设AF=DF=x,得FG=AB-AF-GB=,
    在Rt△DFG中,,
    即=,
    解得,
    ∴==.
    故答案为.
    点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题.
    14、 (x-3)(x+1);
    【解析】
    根据因式分解的概念和步骤,可先把原式化简,然后用十字相乘分解,即原式=x2﹣3x+x﹣3
    =x2﹣2x﹣3=(x﹣3)(x+1);或先把前两项提公因式,然后再把x-3看做整体提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).
    故答案为(x﹣3)(x+1).
    点睛:此题主要考查了因式分解,关键是明确因式分解是把一个多项式化为几个因式积的形式.再利用因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),进行分解因式即可.
    15、2
    【解析】
    原式利用立方根定义,以及绝对值的代数意义计算即可求出值.
    【详解】
    解:原式=3﹣1=2,
    故答案为:2
    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    16、41
    【解析】
    试题分析:如图,连接EF
    ∵△ADF与△DEF同底等高,
    ∴S△ADF=S△DEF,
    即S△ADF-S△DPF=S△DEF-S△DPF,
    即S△APD=S△EPF=16cm1,
    同理可得S△BQC=S△EFQ=15cm1,、
    ∴阴影部分的面积为S△EPF+S△EFQ=16+15=41cm1.

    考点:1、三角形面积,1、平行四边形
    17、将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度
    【解析】
    根据图形的旋转和平移性质即可解题.
    【详解】
    解:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度即可得到A′B′、
    【点睛】
    本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.

    三、解答题(共7小题,满分69分)
    18、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
    【解析】
    (1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
    (2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
    (3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
    【详解】
    (1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
    m=100﹣(24+48+8+8)=12,
    故答案为250、12;
    (2)平均数为=1.38(h),
    众数为1.5h,中位数为=1.5h;
    (3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
    【点睛】
    本题主要考查数据的收集、 处理以及统计图表.
    19、证明见解析
    【解析】
    试题分析:先利用等角的余角相等得到根据有两组角对应相等,即可证明两三角形相似.
    试题解析:∵四边形为矩形,


    于点F,



    点睛:两组角对应相等,两三角形相似.
    20、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱
    【解析】
    试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;
    (2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解.
    试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:

    解得.
    答:篮球每个50元,排球每个30元.
    (2)设购买篮球m个,则购买排球(20-m)个,依题意,得:
    50m+30(20-m)≤1.
    解得:m≤2.
    又∵m≥8,∴8≤m≤2.
    ∵篮球的个数必须为整数,∴只能取8、9、2.
    ∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.
    以上三个方案中,方案①最省钱.
    点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.
    21、(1)=4;(2)=n.
    【解析】
    试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;
    (2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.
    试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;
    (2)第n个等式是:=n.证明如下:
    ∵= = =n
    ∴第n个等式是:=n.
    点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.
    22、(1)y=﹣x2+2x+3(2)(,)(3)当点P的坐标为(,)时,四边形ACPB的最大面积值为
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;
    (3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.
    【详解】
    (1)将点B和点C的坐标代入函数解析式,得

    解得
    二次函数的解析式为y=﹣x2+2x+3;
    (2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,
    如图1,连接PP′,则PE⊥CO,垂足为E,

    ∵C(0,3),

    ∴点P的纵坐标,
    当时,即
    解得(不合题意,舍),
    ∴点P的坐标为
    (3)如图2,

    P在抛物线上,设P(m,﹣m2+2m+3),
    设直线BC的解析式为y=kx+b,
    将点B和点C的坐标代入函数解析式,得

    解得
    直线BC的解析为y=﹣x+3,
    设点Q的坐标为(m,﹣m+3),
    PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.
    当y=0时,﹣x2+2x+3=0,
    解得x1=﹣1,x2=3,
    OA=1,

    S四边形ABPC=S△ABC+S△PCQ+S△PBQ



    当m=时,四边形ABPC的面积最大.
    当m=时,,即P点的坐标为
    当点P的坐标为时,四边形ACPB的最大面积值为.
    【点睛】
    本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.
    23、(1)见解析;(2)AB=4
    【解析】
    (1)过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;
    (2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长.
    【详解】
    (1)证明:
    过点B作BH⊥CE于H,如图1.
    ∵CE⊥AD,
    ∴∠BHC=∠CED=90°,∠1+∠D=90°.
    ∵∠BCD=90°,
    ∴∠1+∠2=90°,
    ∴∠2=∠D.
    又BC=CD
    ∴△BHC≌△CED(AAS).
    ∴BH=CE.
    ∵BH⊥CE,CE⊥AD,∠A=90°,
    ∴四边形ABHE是矩形,
    ∴AE=BH.
    ∴AE=CE.
    (2)∵四边形ABHE是矩形,
    ∴AB=HE.
    ∵在Rt△CED中,,
    设DE=x,CE=3x,
    ∴.
    ∴x=2.
    ∴DE=2,CE=3.
    ∵CH=DE=2.
    ∴AB=HE=3-2=4.

    【点睛】
    本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.
    24、(1)1;(2)详见解析;(3)750;(4).
    【解析】
    (1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;
    (2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;
    (3)计算足球的百分比,根据样本估计总体,即可解答;
    (4)利用概率公式计算即可.
    【详解】
    (1)30÷15%=1(人).
    答:共抽取1名学生进行问卷调查;
    故答案为1.
    (2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.
    如图所示:

    (3)3000×0.25=750(人).
    答:全校学生喜欢足球运动的人数为750人.
    (4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)

    共有25种等可能的结果数,选同一项目的结果数为5,
    所以甲乙两人中有且选同一项目的概率P(A)=.
    【点睛】
    本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.

    相关试卷

    2022年黄冈中考数学猜题卷含解析:

    这是一份2022年黄冈中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,错误的是,已知一次函数y=等内容,欢迎下载使用。

    2022年湖南师大附中中考数学猜题卷含解析:

    这是一份2022年湖南师大附中中考数学猜题卷含解析,共17页。试卷主要包含了如图,在平面直角坐标系中,以A等内容,欢迎下载使用。

    2022年北京市怀柔区达标名校中考数学猜题卷含解析:

    这是一份2022年北京市怀柔区达标名校中考数学猜题卷含解析,共29页。试卷主要包含了点P等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map