


2022年湖南省茶陵县中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为( )
A.10cm B.20cm C.10πcm D.20πcm
2.计算(x-l)(x-2)的结果为( )
A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+2
3.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分的面积为( )
A.1+ B.1+
C.2sin20°+ D.
4.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )
A. B.1 C. D.
5.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是( )
A. B. C. D.
6.下列几何体是棱锥的是( )
A. B. C. D.
7.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是( )
A.(0,) B.(0,) C.(0,2) D.(0,)
8.化简(﹣a2)•a5所得的结果是( )
A.a7 B.﹣a7 C.a10 D.﹣a10
9.如图图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
10.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是( )
A.k>-1 B.k≥-1 C.k<-1 D.k≤-1
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式:_______________.
12.计算:(a2)2=_____.
13.a(a+b)﹣b(a+b)=_____.
14.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.
15.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8; =8,则这两人5次射击命中的环数的方差S甲2_____S乙2(填“>”“<”或“=”).
16.如果分式的值是0,那么x的值是______.
三、解答题(共8题,共72分)
17.(8分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.
(1)求二次函数的解析式;
(2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;
(3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.
18.(8分)如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,,.
(1)求教学楼的高度;
(2)求的值.
19.(8分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.求11月份这两种水果的进价分别为每千克多少元?时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值.
20.(8分)解方程: +=1.
21.(8分)如图,在平行四边形ABCD中,,点E、F分别是BC、AD的中点.
(1)求证:≌;
(2)当时,求四边形AECF的面积.
22.(10分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图.
成绩分组 | 组中值 | 频数 |
25≤x<30 | 27.5 | 4 |
30≤x<35 | 32.5 | m |
35≤x<40 | 37.5 | 24 |
40≤x<45 | a | 36 |
45≤x<50 | 47.5 | n |
50≤x<55 | 52.5 | 4 |
(1)求a、m、n的值,并补全频数分布直方图;
(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?
23.(12分)解方程组:.
24.一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
试题解析:扇形的弧长为:=20πcm,
∴圆锥底面半径为20π÷2π=10cm,
故选A.
考点:圆锥的计算.
2、B
【解析】
根据多项式的乘法法则计算即可.
【详解】
(x-l)(x-2)
= x2-2x-x+2
= x2-3x+2.
故选B.
【点睛】
本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.
3、A
【解析】
连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.
【详解】
连接OT、OC,
∵PT切⊙O于点T,
∴∠OTP=90°,
∵∠P=20°,
∴∠POT=70°,
∵M是OP的中点,
∴TM=OM=PM,
∴∠MTO=∠POT=70°,
∵OT=OC,
∴∠MTO=∠OCT=70°,
∴∠OCT=180°-2×70°=40°,
∴∠COM=30°,
作CH⊥AP,垂足为H,则CH=OC=1,
S阴影=S△AOC+S扇形OCB=OA•CH+=1+,
故选A.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系.
4、A
【解析】
∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,
∴从四张卡片中任取一张,恰好是中心对称图形的概率=.
故选A.
5、B
【解析】
分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.
详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;
故选B.
点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.
6、D
【解析】
分析:根据棱锥的概念判断即可.
A是三棱柱,错误;
B是圆柱,错误;
C是圆锥,错误;
D是四棱锥,正确.
故选D.
点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.
7、B
【解析】
解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小.∵四边形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0).
∵D是OB的中点,∴D(﹣2,0).
设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为.当x=0时,y=,∴E(0,).故选B.
8、B
【解析】
分析:根据同底数幂的乘法计算即可,计算时注意确定符号.
详解: (-a2)·a5=-a7.
故选B.
点睛:本题考查了同底数幂的乘法,熟练掌握同底数的幂相乘,底数不变,指数相加是解答本题的关键.
9、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故A不正确;
B、既是轴对称图形,又是中心对称图形,故B正确;
C、是轴对称图形,不是中心对称图形,故C不正确;
D、既不是轴对称图形,也不是中心对称图形,故D不正确.
故选B.
【点睛】
本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.
10、C
【解析】
试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.
由题意得,解得
故选C.
考点:一元二次方程的根的判别式
点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、 (x+y)(x-y)
【解析】
直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案为(x+y)(x-y).
12、a1.
【解析】
根据幂的乘方法则进行计算即可.
【详解】
故答案为
【点睛】
考查幂的乘方,掌握运算法则是解题的关键.
13、(a+b)(a﹣b).
【解析】
先确定公因式为(a+b),然后提取公因式后整理即可.
【详解】
a(a+b)﹣b(a+b)=(a+b)(a﹣b).
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
14、132°
【解析】
解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.
15、>
【解析】
分别根据方差公式计算出甲、乙两人的方差,再比较大小.
【详解】
∵=8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.
故答案为:>.
【点睛】
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
16、1.
【解析】
根据分式为1的条件得到方程,解方程得到答案.
【详解】
由题意得,x=1,故答案是:1.
【点睛】
本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.
三、解答题(共8题,共72分)
17、(1);(2)P点坐标为, ;(3) 或或或.
【解析】
(1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;
(2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;
(3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.
【详解】
解:(1)∵A(-1,0),在上,
,解得,
∴二次函数的解析式为;
(2)在中,令可得,解得或,
,且,
∴经过、两点的直线为,
设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,
,
∴当时,四边形的面积最大,此时P点坐标为,
∴四边形的最大面积为;
(3),
∴对称轴为,
∴可设点坐标为,
,,
,,,
为直角三角形,
∴有、和三种情况,
①当时,则有,即,解得或,此时点坐标为或;
②当时,则有,即,解得,此时点坐标为;
③当时,则有,即,解得,此时点坐标为;
综上可知点的坐标为或或或.
【点睛】
本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.
18、(1)12m;(2)
【解析】
(1)利用即可求解;
(2)通过三角形外角的性质得出,则,设,则,在 中利用勾股定理即可求出BC,BD的长度,最后利用即可求解.
【详解】
解:(1)在中,,
答:教学楼的高度为;
(2)
设,则,
故,
解得:,
则
故.
【点睛】
本题主要考查解直角三角形,掌握勾股定理及正切,余弦的定义是解题的关键.
19、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.
【解析】
(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,
依题意有, 解得,
答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;
(2)依题意有:8(1﹣m%)×400(1+m%)+20(1﹣m%)×100(1+2m%)=15200,
解得m1=0(舍去),m2=49.1,
故m的值为49.1.
20、-3
【解析】
试题分析:解得x=-3
经检验: x=-3是原方程的根.
∴原方程的根是x=-3
考点:解一元一次方程
点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.
21、(1)见解析;(2)
【解析】
(1)根据平行四边形的性质得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根据全等三角形的判定推出即可;
(2)求出△ABE是等边三角形,求出高AH的长,再求出面积即可.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴,,,
∵点E、F分别是BC、AD的中点,
∴,,
∴,
在和中
,
∴≌();
(2)作于H,
∵四边形ABCD是平行四边形,
∴,,
∵点E、F分别是BC、AD的中点,,
∴,,
∴,,
∴四边形AECF是平行四边形,
∵,
∴四边形AECF是菱形,
∴,
∵,
∴,
即是等边三角形,
,
由勾股定理得:,
∴四边形AECF的面积是.
【点睛】
本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.
22、(1)详见解析(2)2400
【解析】
(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.
(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.
【详解】
解:(1)组距是:37.5﹣32.5=5,则a=37.5+5=42.5;
根据频数分布直方图可得:m=12;
则n=100﹣4﹣12﹣24﹣36﹣4=1.
补全频数分布直方图如下:
(2)∵优秀的人数所占的比例是:=0.6,
∴该县中考体育成绩优秀学生人数约为:4000×0.6=2400(人)
23、;;.
【解析】
分析:
把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.
详解:
由方程可得,,;
则原方程组转化为(Ⅰ)或 (Ⅱ),
解方程组(Ⅰ)得,
解方程组(Ⅱ)得 ,
∴原方程组的解是 .
点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.
24、路灯高CD为5.1米.
【解析】
根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.
【详解】
设CD长为x米,
∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,
∴MA∥CD∥BN,
∴EC=CD=x米,
∴△ABN∽△ACD,
∴=,即,
解得:x=5.1.
经检验,x=5.1是原方程的解,
∴路灯高CD为5.1米.
【点睛】
本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.
湖南省株洲市茶陵县2024届九年级中考一模数学试卷(含解析): 这是一份湖南省株洲市茶陵县2024届九年级中考一模数学试卷(含解析),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖南省株洲市茶陵县中考数学一模试卷(含解析): 这是一份2024年湖南省株洲市茶陵县中考数学一模试卷(含解析),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
131,2024年湖南省株洲市茶陵县中考数学一模数学试题: 这是一份131,2024年湖南省株洲市茶陵县中考数学一模数学试题,共10页。试卷主要包含了½ 12, π 16等内容,欢迎下载使用。