2022年湖北省孝感市孝南区十校联谊重点中学中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是( )
A.6π B.12π C.18π D.24π
2.如图的立体图形,从左面看可能是( )
A. B.
C. D.
3.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分的面积为( )
A.1+ B.1+
C.2sin20°+ D.
4.下列运算中,计算结果正确的是( )
A.a2•a3=a6 B.a2+a3=a5 C.(a2)3=a6 D.a12÷a6=a2
5.二次函数的图像如图所示,下列结论正确是( )
A. B. C. D.有两个不相等的实数根
6.不等式组的解集表示在数轴上正确的是( )
A. B. C. D.
7.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )
A.经过集中喷洒药物,室内空气中的含药量最高达到
B.室内空气中的含药量不低于的持续时间达到了
C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内
8.下列图形中,周长不是32 m的图形是( )
A. B. C. D.
9.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为
A.1或−2 B.−或
C. D.1
10.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是( )
A.π B. C. D.
11.已知点,为是反比例函数上一点,当时,m的取值范围是( )
A. B. C. D.
12.已知,下列说法中,不正确的是( )
A. B.与方向相同
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 ______ y2.(填“>”,“<”或“=”).
14.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与
直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为 .
15.如图,AB为⊙O的直径,BC为⊙O的弦,点D是劣弧AC上一点,若点E在直径AB另一侧的半圆上,且∠AED=27°,则∠BCD的度数为_______.
16.比较大小:3_________ (填<,>或=).
17.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.
18.当x为_____时,分式的值为1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.
20.(6分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.
并整理分析数据如下表:
平均成绩/环
中位数/环
众数/环
方差
甲
7
7
1.2
乙
7
8
(1)求,,的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
21.(6分)某市旅游部门统计了今年“五•一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:
(1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;
(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;
(3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?
22.(8分) (1)计算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.
(2)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.
23.(8分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)
生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?
24.(10分)如图,已知在△ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.
(1)求△ABC的面积;
(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果△APD是直角三角形,求PB的长.
25.(10分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是 三角形;
(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;
(3)如图,△是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.
26.(12分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断AD2与AC•CD的大小关系;
(2)求∠ABD的度数.
27.(12分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.
【详解】
∵,
∴∠AOB=∠BOC=∠COD=60°.
∴阴影部分面积=.
故答案为:A.
【点睛】
本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.
2、A
【解析】
根据三视图的性质即可解题.
【详解】
解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,
故选A.
【点睛】
本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.
3、A
【解析】
连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.
【详解】
连接OT、OC,
∵PT切⊙O于点T,
∴∠OTP=90°,
∵∠P=20°,
∴∠POT=70°,
∵M是OP的中点,
∴TM=OM=PM,
∴∠MTO=∠POT=70°,
∵OT=OC,
∴∠MTO=∠OCT=70°,
∴∠OCT=180°-2×70°=40°,
∴∠COM=30°,
作CH⊥AP,垂足为H,则CH=OC=1,
S阴影=S△AOC+S扇形OCB=OA•CH+=1+,
故选A.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系.
4、C
【解析】
根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.
【详解】
A、a2•a3=a2+3=a5,故本选项错误;
B、a2+a3不能进行运算,故本选项错误;
C、(a2)3=a2×3=a6,故本选项正确;
D、a12÷a6=a12﹣6=a6,故本选项错误.
故选:C.
【点睛】
本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.
5、C
【解析】
【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x==1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得 3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.
【详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;
∵对称轴x==1,∴b=-2a,即2a+b=0,故B选项错误;
当x=-1时, y=a-b+c<0,又∵b=-2a,∴ 3a+c<0,故C选项正确;
∵抛物线的顶点为(1,3),
∴的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,
故选C.
【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.
6、C
【解析】
根据题意先解出的解集是,
把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;
表示时要注意方向向左,起始的标记为实心圆点,
综上所述C的表示符合这些条件.
故应选C.
7、C
【解析】
利用图中信息一一判断即可.
【详解】
解: A、正确.不符合题意.
B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;
C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;
D、正确.不符合题意,
故选C.
【点睛】
本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.
8、B
【解析】
根据所给图形,分别计算出它们的周长,然后判断各选项即可.
【详解】
A. L=(6+10)×2=32,其周长为32.
B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.
C. L=(6+10)×2=32,其周长为32.
D. L=(6+10)×2=32,其周长为32.
采用排除法即可选出B
故选B.
【点睛】
此题考查多边形的周长,解题在于掌握计算公式.
9、D
【解析】
先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
【详解】
∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
∴对称轴是直线x=-=-1,
∵当x≥2时,y随x的增大而增大,
∴a>0,
∵-2≤x≤1时,y的最大值为9,
∴x=1时,y=a+2a+3a2+3=9,
∴3a2+3a-6=0,
∴a=1,或a=-2(不合题意舍去).
故选D.
【点睛】
本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.
10、B
【解析】
连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.
【详解】
解:连接OB,OC.
∵∠BOC=2∠BAC=60°,
∵OB=OC,
∴△OBC是等边三角形,
∴OB=OC=BC=1,
∴的长=,
故选B.
【点睛】
考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
11、A
【解析】
直接把n的值代入求出m的取值范围.
【详解】
解:∵点P(m,n),为是反比例函数y=-图象上一点,
∴当-1≤n<-1时,
∴n=-1时,m=1,n=-1时,m=1,
则m的取值范围是:1≤m<1.
故选A.
【点睛】
此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.
12、A
【解析】
根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.
【详解】
A、,故该选项说法错误
B、因为,所以与的方向相同,故该选项说法正确,
C、因为,所以,故该选项说法正确,
D、因为,所以;故该选项说法正确,
故选:A.
【点睛】
本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、>
【解析】
分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.
详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.
故答案为>.
点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.
14、2
【解析】
解:∵OA的中点是D,点A的坐标为(﹣6,4),
∴D(﹣1,2),
∵双曲线y=经过点D,
∴k=﹣1×2=﹣6,
∴△BOC的面积=|k|=1.
又∵△AOB的面积=×6×4=12,
∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣1=2.
15、117°
【解析】
连接AD,BD,利用圆周角定理解答即可.
【详解】
连接AD,BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵∠AED=27°,
∴∠DBA=27°,
∴∠DAB=90°-27°=63°,
∴∠DCB=180°-63°=117°,
故答案为117°
【点睛】
此题考查圆周角定理,关键是根据圆周角定理解答.
16、<
【解析】
【分析】根据实数大小比较的方法进行比较即可得答案.
【详解】∵32=9,9<10,
∴3<,
故答案为:<.
【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.
17、直角三角形.
【解析】
根据题意,画出图形,用垂直平分线的性质解答.
【详解】
点O落在AB边上,
连接CO,
∵OD是AC的垂直平分线,
∴OC=OA,
同理OC=OB,
∴OA=OB=OC,
∴A、B、C都落在以O为圆心,以AB为直径的圆周上,
∴∠C是直角.
∴这个三角形是直角三角形.
【点睛】
本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.
18、2
【解析】
分式的值是1的条件是,分子为1,分母不为1.
【详解】
∵3x-6=1,
∴x=2,
当x=2时,2x+1≠1.
∴当x=2时,分式的值是1.
故答案为2.
【点睛】
本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)点B的坐标是(-5,-4);直线AB的解析式为:
(2)四边形CBED是菱形.理由见解析
【解析】
(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;
(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.
【详解】
解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,
得. ∴点B的坐标是(-5,-4)
设直线AB的解析式为,
将 A(3,)、B(-5,-4)代入得,
, 解得:.
∴直线AB的解析式为:
(2)四边形CBED是菱形.理由如下:
点D的坐标是(3,0),点C的坐标是(-2,0).
∵ BE∥轴, ∴点E的坐标是(0,-4).
而CD =5, BE=5,且BE∥CD.
∴四边形CBED是平行四边形
在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.
∴□CBED是菱形
20、(1)a=7,b=7.5,c=4.2;(2)见解析.
【解析】
(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
(2)结合平均数和中位数、众数、方差三方面的特点进行分析.
【详解】
(1)甲的平均成绩a==7(环),
∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
∴乙射击成绩的中位数b==7.5(环),
其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]
=×(16+9+1+3+4+9)
=4.2;
(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;
综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
【点睛】
本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.
21、(1)60人;(2)144°,补全图形见解析;(3)15万人.
【解析】
(1)用B景点人数除以其所占百分比可得;
(2)用360°乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;
(3)用总人数乘以样本中D景点人数所占比例
【详解】
(1)今年“五•一”放假期间该市这四个景点共接待游客的总人数为18÷30%=60万人;
(2)扇形统计图中景点A所对应的圆心角的度数是360°×=144°,C景点人数为60﹣(24+18+10)=8万人,
补全图形如下:
(3)估计选择去景点D旅游的人数为90×=15(万人).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
22、 (1)3;(2) x﹣y,1.
【解析】
(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;
(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
【详解】
(1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018
=3×+2-+3-1-1,
=+2−+3-1-1,
=3;
(2)(x﹣)÷,
=,
=
=x-y,
当x=,y=-1时,原式=−+1=1.
【点睛】
本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.
23、(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆.
【解析】
(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解;
(2)把每月的生产量加起来即可,然后与计划相比较.
【详解】
(1)+4-(-5)=9(辆)
答:生产量最多的一天比生产量最少的一天多生产9辆.
(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆),
因为121>120 121-120=1(辆)
答:半年内总生产量是121辆.比计划多了1辆.
【点睛】
此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则.
24、(1)12(2)y=(0<x<5)(3)或
【解析】
试题分析:(1)过点A作AH⊥BC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;
(2)先证明△BPD∽△BAC,得到=,再根据 ,代入相关的量即可得;
(3)分情况进行讨论即可得.
试题解析:(1)过点A作AH⊥BC于点H ,则∠AHB=90°,∴cosB= ,
∵cosB=,AB=5,∴BH=4,∴AH=3,
∵AB=AC,∴BC=2BH=8,
∴S△ABC=×8×3=12
(2)∵PB=PD,∴∠B=∠PDB,
∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,
∴△BPD∽△BAC,
∴ ,
即,
解得=,
∴ ,
∴ ,
解得y=(0<x<5);
(3)∠APD<90°,
过C作CE⊥AB交BA延长线于E,可得cos∠CAE= ,
①当∠ADP=90°时,
cos∠APD=cos∠CAE=,
即 ,
解得x=;
②当∠PAD=90°时,
,
解得x=,
综上所述,PB=或.
【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.
25、(1)等腰(2)(3)存在,
【解析】解:(1)等腰
(2)∵抛物线的“抛物线三角形”是等腰直角三角形,
∴该抛物线的顶点满足.
∴.
(3)存在.
如图,作△与△关于原点中心对称,
则四边形为平行四边形.
当时,平行四边形为矩形.
又∵,
∴△为等边三角形.
作,垂足为.
∴.
∴.
∴.
∴,.
∴,.
设过点三点的抛物线,则
解之,得
∴所求抛物线的表达式为.
26、(1)AD2=AC•CD.(2)36°.
【解析】
试题分析:(1)通过计算得到=,再计算AC·CD,比较即可得到结论;
(2)由,得到,即,从而得到△ABC∽△BDC,故有,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.
试题解析:(1)∵AD=BC=,∴==.
∵AC=1,∴CD==,∴;
(2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.
考点:相似三角形的判定与性质.
27、(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
【解析】
(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.
(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.
(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.
【详解】
(1)根据题意得:
y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,
自变量x的取值范围是:0<x≤10且x为正整数;
(2)当y=2520时,得﹣10x2+130x+2300=2520,
解得x1=2,x2=11(不合题意,舍去)
当x=2时,30+x=32(元)
答:每件玩具的售价定为32元时,月销售利润恰为2520元.
(3)根据题意得:
y=﹣10x2+130x+2300
=﹣10(x﹣6.5)2+2722.5,
∵a=﹣10<0,
∴当x=6.5时,y有最大值为2722.5,
∵0<x≤10且x为正整数,
∴当x=6时,30+x=36,y=2720(元),
当x=7时,30+x=37,y=2720(元),
答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
【点睛】
本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.
2023-2024学年湖北省孝感市孝南区十校联谊数学九上期末教学质量检测模拟试题含答案: 这是一份2023-2024学年湖北省孝感市孝南区十校联谊数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,方程x,已点A等内容,欢迎下载使用。
湖北省孝感市孝南区十校联谊2023-2024学年八上数学期末教学质量检测试题含答案: 这是一份湖北省孝感市孝南区十校联谊2023-2024学年八上数学期末教学质量检测试题含答案,共7页。
2022届湖北省孝感市八校联谊——中考数学适应性模拟试题含解析: 这是一份2022届湖北省孝感市八校联谊——中考数学适应性模拟试题含解析,共27页。试卷主要包含了不等式3x<2,-2的绝对值是,下列计算正确的是等内容,欢迎下载使用。

