湖北省孝感市孝南区十校联谊重点中学2021-2022学年中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为( )
A.正比例函数y=kx(k为常数,k≠0,x>0)
B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)
C.反比例函数y=(k为常数,k≠0,x>0)
D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)
2.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交
AB于G,连接DG,现在有如下4个结论:①≌;②;③∠GDE=45°;④
DG=DE在以上4个结论中,正确的共有( )个
A.1个 B.2 个 C.3 个 D.4个
3.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰( )
丙
丁
平均数
8
8
方差
1.2
1.8
A.甲 B.乙 C.丙 D.丁
4.若3x>﹣3y,则下列不等式中一定成立的是 ( )
A. B. C. D.
5.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是( )
A.2011年我国的核电发电量占总发电量的比值约为1.5%
B.2006年我国的总发电量约为25000亿千瓦时
C.2013年我国的核电发电量占总发电量的比值是2006年的2倍
D.我国的核电发电量从2008年开始突破1000亿千瓦时
6.下列计算正确的是( )
A. B.0.00002=2×105
C. D.
7.若分式的值为0,则x的值为( )
A.-2 B.0 C.2 D.±2
8.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为( )
A. B. C. D.
9.sin60°的值为( )
A. B. C. D.
10.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( )
A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×105
11.下列图形是轴对称图形的有( )
A.2个 B.3个 C.4个 D.5个
12.对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,,则的值为( )
A.-1 B.-11 C.1 D.11
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.因式分解:=______.
14.算术平方根等于本身的实数是__________.
15.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.
16.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.
17.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____.
18.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台. 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.
20.(6分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.
(1)求证:△ABE≌△BCN;
(2)若N为AB的中点,求tan∠ABE.
21.(6分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:
(1)利用刻度尺在∠AOB的两边OA,OB上分别取OM=ON;
(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;
(3)画射线OP.
则射线OP为∠AOB的平分线.请写出小林的画法的依据______.
22.(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.
23.(8分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:
(1)该超市“元旦”期间共销售 个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;
(2)补全条形统计图;
(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?
24.(10分)如图,已知△ABC.
(1)请用直尺和圆规作出∠A的平分线AD(不要求写作法,但要保留作图痕迹);
(2)在(1)的条件下,若AB=AC,∠B=70°,求∠BAD的度数.
25.(10分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.
求证:AE∥CF.
26.(12分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.
求:(1)求∠CDB的度数;
(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.
27.(12分)先化简(-a+1)÷,并从0,-1,2中选一个合适的数作为a的值代入求值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由∠FQO与∠OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B,再由切线长定理得到OD与OC分别为∠EOG与∠FOG的平分线,得到∠DOC为∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项.
【详解】
延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,
∵AE,BF为圆O的切线,
∴OE⊥AE,OF⊥FB,
∴∠AEO=∠BFO=90°,
在Rt△AEO和Rt△BFO中,
∵,
∴Rt△AEO≌Rt△BFO(HL),
∴∠A=∠B,
∴△QAB为等腰三角形,
又∵O为AB的中点,即AO=BO,
∴QO⊥AB,
∴∠QOB=∠QFO=90°,
又∵∠OQF=∠BQO,
∴△QOF∽△QBO,
∴∠B=∠QOF,
同理可以得到∠A=∠QOE,
∴∠QOF=∠QOE,
根据切线长定理得:OD平分∠EOG,OC平分∠GOF,
∴∠DOC=∠EOF=∠A=∠B,
又∵∠GCO=∠FCO,
∴△DOC∽△OBC,
同理可以得到△DOC∽△DAO,
∴△DAO∽△OBC,
∴,
∴AD•BC=AO•OB=AB2,即xy=AB2为定值,
设k=AB2,得到y=,
则y与x满足的函数关系式为反比例函数y=(k为常数,k≠0,x>0).
故选C.
【点睛】
本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.
2、C
【解析】
【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE==45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.
【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
∴△ADG≌△FDG,①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12﹣x,
由勾股定理得:EG2=BE2+BG2,
即:(x+6)2=62+(12﹣x)2,
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,②正确;
∵△ADG≌△FDG,△DCE≌△DFE,
∴∠ADG=∠FDG,∠FDE=∠CDE
∴∠GDE==45〫.③正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;
∴正确说法是①②③
故选:C
【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.
3、D
【解析】
求出甲、乙的平均数、方差,再结合方差的意义即可判断.
【详解】
=(6+10+8+9+8+7+8+9+7+7)=8,
= [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]
=×13
=1.3;
=(7+10+7+7+9+8+7+9+9+7)=8,
= [(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]
=×12
=1.2;
丙的平均数为8,方差为1.2,
丁的平均数为8,方差为1.8,
故4个人的平均数相同,方差丁最大.
故应该淘汰丁.
故选D.
【点睛】
本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.
4、A
【解析】
两边都除以3,得x>﹣y,两边都加y,得:x+y>0,
故选A.
5、B
【解析】
由折线统计图和条形统计图对各选项逐一判断即可得.
【详解】
解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;
B、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;
C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;
D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;
故选:B.
【点睛】
本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.
6、D
【解析】
在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.
【详解】
解:A、原式= ;故本选项错误;
B、原式=2×10-5;故本选项错误;
C、原式= ;故本选项错误;
D、原式=;故本选项正确;
故选:D.
【点睛】
分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.
7、C
【解析】
由题意可知:,
解得:x=2,
故选C.
8、C
【解析】
由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.
【详解】
第(1)个图形中面积为1的正方形有2个,
第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个,
…,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个.
【点睛】
本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.
9、B
【解析】
解:sin60°=.故选B.
10、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】
∵3804.2千=3804200,
∴3804200=3.8042×106;
故选:C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
11、C
【解析】
试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
解:图(1)有一条对称轴,是轴对称图形,符合题意;
图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
图(3)有二条对称轴,是轴对称图形,符合题意;
图(3)有五条对称轴,是轴对称图形,符合题意;
图(3)有一条对称轴,是轴对称图形,符合题意.
故轴对称图形有4个.
故选C.
考点:轴对称图形.
12、B
【解析】
先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.
【详解】
由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28
所以
解这个方程组,得
所以2△2=a+b+c=-35-2c+24+c+c=-2.
故选B.
【点睛】
本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2(x+3)(x﹣3).
【解析】
试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x2-9)=2(x+3)(x-3).
考点:因式分解.
14、0或1
【解析】
根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.
解:1和0的算术平方根等于本身.
故答案为1和0
“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.
15、
【解析】
首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.
【详解】
列表如下:
﹣2
﹣1
2
﹣2
2
﹣4
﹣1
2
﹣2
2
﹣4
﹣2
由表可知,共有6种等可能结果,其中积为正数的有2种结果,
所以积为正数的概率为,
故答案为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
16、17
【解析】
先利用完全平方公式展开,然后再求和.
【详解】
根据(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9, x2+y2-2xy=9,所以x2+y2=17.
【点睛】
(1)完全平方公式:.
(2)平方差公式:(a+b)(a-b)=.
(3)常用等价变形:
,
,
.
17、8π
【解析】
试题分析:∵弧的半径为24,所对圆心角为60°,
∴弧长为l==8π.
故答案为8π.
【考点】弧长的计算.
18、.
【解析】
根据题意,画出树状图,然后根据树状图和概率公式求概率即可.
【详解】
解:画树状图得:
共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,
至少有一辆汽车向左转的概率是:.
故答案为:.
【点睛】
此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元
【解析】
(1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价÷单价可得出关于x的分式方程,解之并检验后即可得出结论;
(2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润×购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题.
【详解】
(1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,
由题意,得 ,
解得x=1500,
经检验,x=1500是原分式方程的解,
乙种品牌空调的进价为(1+20%)×1500=1800(元).
答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;
(2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,
由题意,得1500a+1800(10-a)≤16000,
解得 ≤a,
设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,
因为-700<0,
则w随a的增大而减少,
当a=7时,w最大,最大为12100元.
答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.
【点睛】
本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程;(2)根据总利润=单台利润×购进数量找出y关于a的函数关系式.
20、(1)证明见解析;(2)
【解析】
(1)根据正方形的性质得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根据垂线和三角形内角和定理得到∠2+∠3=90°,推出∠1=∠3,根据ASA推出△ABE≌△BCN;(2)tan∠ABE=,根据已知求出AE与AB的关系即可求得tan∠ABE.
【详解】
(1)证明:∵四边形ABCD为正方形
∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°
∵CM⊥BE,
∴∠2+∠3=90°
∴∠1=∠3
在△ABE和△BCN中,
∴△ABE≌△BCN(ASA);
(2)∵N为AB中点,
∴BN=AB
又∵△ABE≌△BCN,
∴AE=BN=AB
在Rt△ABE中,tan∠ABE═.
【点睛】
本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出△ABE≌△BCN是解此题的关键.
21、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线
【解析】
利用“HL”判断Rt△OPM≌Rt△OPN,从而得到∠POM=∠PON.
【详解】
有画法得OM=ON,∠OMP=∠ONP=90°,则可判定Rt△OPM≌Rt△OPN,
所以∠POM=∠PON,
即射线OP为∠AOB的平分线.
故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线.
【点睛】
本题考查了作图−基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.
22、(1),;(2)点的坐标为;(3)点的坐标为和
【解析】
(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;
(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.
【详解】
解:(1)轴,,抛物线对称轴为直线
点的坐标为
解得或(舍去),
(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.
直线经过点利用待定系数法可得直线的表达式为.
因为点在上,即点的坐标为
(3)存在点满足题意.设点坐标为,则
作垂足为
①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为
②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为
综上所述:满足题意得点的坐标为和
考点:二次函数的综合运用.
23、(1)2400,60;(2)见解析;(3)500
【解析】
整体分析:
(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.
解:(1)共销售绿色鸡蛋:1200÷50%=2400个,
A品牌所占的圆心角:×360°=60°;
故答案为2400,60;
(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,
补全统计图如图:
(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.
24、(1)见解析;(2)20°;
【解析】
(1)尺规作一个角的平分线是基本尺规作图,根据作图步骤即可画图;
(2)运用等腰三角形的性质再根据角平分线的定义计算出∠BAD的度数即可.
【详解】
(1)如图,AD为所求;
(2)∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠BDA=90°,
∴∠BAD=90°﹣∠B=90°﹣70°=20°.
【点睛】
考查角平分线的作法以及等腰三角形的性质,掌握角平分线的作法是解题的关键.
25、证明见解析
【解析】
试题分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.
证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.
∵在△ADE与△CBF中,AD=BC,∠ADE=∠CBF, DE=BF,
∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.
∴AE∥CF.
26、:(1) 30º;(2).
【解析】
分析:
(1)由已知条件易得∠ABC=∠A=60°,结合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;
(2)过点D作DH⊥AB于点H,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,这样即可由梯形的面积公式求出梯形ABCD的面积了.
详解:
(1) ∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,
∴∠CBA=∠A=60º,
∵BD平分∠ABC,
∴∠CDB=∠ABD=∠CBA=30º,
(2)在△ACD中,∵∠ADB=180º–∠A–∠ABD=90º.
∴BD=AD A=2tan60º=2.
过点D作DH⊥AB,垂足为H,
∴AH=ADA=2sin60º=.
∵∠CDB=∠CBD=∠CBD=30º,
∴DC=BC=AD=2
∵AB=2AD=4
∴.
点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.
27、1.
【解析】
试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.
试题解析:原式===;
当a=0时,原式=1.
考点:分式的化简求值.
2023-2024学年湖北省孝感市孝南区十校联谊数学九上期末教学质量检测模拟试题含答案: 这是一份2023-2024学年湖北省孝感市孝南区十校联谊数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,方程x,已点A等内容,欢迎下载使用。
2022年湖北省孝感市孝南区十校联谊重点中学中考适应性考试数学试题含解析: 这是一份2022年湖北省孝感市孝南区十校联谊重点中学中考适应性考试数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022届湖北省孝感市孝南区等五校中考数学仿真试卷含解析: 这是一份2022届湖北省孝感市孝南区等五校中考数学仿真试卷含解析,共22页。试卷主要包含了下列说法正确的是,下列计算,结果等于a4的是,下列各数中负数是等内容,欢迎下载使用。

