|试卷下载
搜索
    上传资料 赚现金
    2022年湖北省随州市高新区大堰坡中学初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022年湖北省随州市高新区大堰坡中学初中数学毕业考试模拟冲刺卷含解析01
    2022年湖北省随州市高新区大堰坡中学初中数学毕业考试模拟冲刺卷含解析02
    2022年湖北省随州市高新区大堰坡中学初中数学毕业考试模拟冲刺卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北省随州市高新区大堰坡中学初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2022年湖北省随州市高新区大堰坡中学初中数学毕业考试模拟冲刺卷含解析,共23页。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )
    A.= B.=
    C.= D.=
    2.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是( )

    A.2 B.3 C.4 D.5
    3.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为(  )

    A. B. C. D.
    4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为(  )

    A.2 B.3 C.4 D.5
    5.如图是某个几何体的展开图,该几何体是( )

    A.三棱柱 B.圆锥 C.四棱柱 D.圆柱
    6.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )

    A. B.
    C. D.
    7.若(x﹣1)0=1成立,则x的取值范围是(  )
    A.x=﹣1 B.x=1 C.x≠0 D.x≠1
    8.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )

    A.70° B.65° C.60° D.55°
    9.一次函数与反比例函数在同一个坐标系中的图象可能是(  )
    A. B. C. D.
    10.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
    A.k>1 B.k>0 C.k≥1 D.k<1
    11.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )
    A. B. C. D.
    12.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为(  )
    A.8×107 B.880×108 C.8.8×109 D.8.8×1010
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.因式分解:3a2-6a+3=________.
    14.在△ABC中,∠C=90°,sinA=,BC=4,则AB值是_____.
    15.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=(  )
    A.﹣1 B.4 C.﹣4 D.1
    16.分解因式: ____________.
    17.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.

    18.某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角∠EAB=53°,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m.则篮球架横伸臂DG的长约为_____m(结果保留一位小数,参考数据:sin53°≈, cos53°≈,tan53°≈).

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某商场同时购进甲、乙两种商品共200件,其进价和售价如表,
    商品名称


    进价(元/件)
    80
    100
    售价(元/件)
    160
    240
    设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元.
    (1)求y与x的函数关系式;
    (2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?
    (3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.
    20.(6分)解不等式组:,并把解集在数轴上表示出来.
    21.(6分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.
    22.(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)

    23.(8分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
    (1)概念理解:
    如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
    (1)问题探究:
    如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
    (3)应用拓展:
    如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.

    24.(10分)解方程:.
    25.(10分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O.连接OA、OB、OC、OD.OE是边CD的中线,且∠AOB+∠COD=180°
    (1)如图2,当△ABO是等边三角形时,求证:OE=AB;
    (2)如图3,当△ABO是直角三角形时,且∠AOB=90°,求证:OE=AB;
    (3)如图4,当△ABO是任意三角形时,设∠OAD=α,∠OBC=β,
    ①试探究α、β之间存在的数量关系?
    ②结论“OE=AB”还成立吗?若成立,请你证明;若不成立,请说明理由.

    26.(12分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
    若△CEF与△ABC相似.
    ①当AC=BC=2时,AD的长为   ;
    ②当AC=3,BC=4时,AD的长为   ;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
    27.(12分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分.
    求证:;
    若的直径长8,,求BE的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.
    【详解】
    设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做 45 个所用时间相等可得=.
    故选A.
    【点睛】
    本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.
    2、A
    【解析】
    试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.
    考点:垂径定理;勾股定理.
    3、A
    【解析】
    转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可
    【详解】
    奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:
    P(奇数)= = .故此题选A.
    【点睛】
    此题主要考查了几何概率,正确应用概率公式是解题关键.
    4、C
    【解析】
    若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,
    即一共添加4个小正方体,
    故选C.
    5、A
    【解析】
    侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
    【详解】
    解:观察图形可知,这个几何体是三棱柱.
    故选A.
    【点睛】
    本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..
    6、D
    【解析】
    此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.
    【详解】
    解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,
    又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.
    故选D.
    点评:本题考核立意相对较新,考核了学生的空间想象能力.
    7、D
    【解析】
    试题解析:由题意可知:x-1≠0,
    x≠1
    故选D.
    8、B
    【解析】
    根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.
    【详解】
    ∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,
    ∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,
    ∴∠AA′C=45°,
    ∵∠1=20°,
    ∴∠B′A′C=45°-20°=25°,
    ∴∠A′B′C=90°-25°=65°,
    ∴∠B=65°.
    故选B.
    【点睛】
    本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.
    9、B
    【解析】
    当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴D不符合题意.
    故选B.
    10、A
    【解析】
    根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
    【详解】
    解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
    即可得k﹣1>0,
    解得k>1.
    故选A.
    【点评】
    本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
    11、D
    【解析】
    由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.
    【详解】
    解:设每头牛值金x两,每只羊值金y两,
    由5头牛、2只羊,值金10两可得:5x+2y=10,
    由2头牛、5只羊,值金8两可得2x+5y=8,
    则7头牛、7只羊,值金18两,据此可知7x+7y=18,
    所以方程组错误,
    故选:D.
    【点睛】
    本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.
    12、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    880亿=880 0000 0000=8.8×1010,
    故选D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、3(a-1)2
    【解析】
    先提公因式,再套用完全平方公式.
    【详解】
    解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.
    【点睛】
    考点:提公因式法与公式法的综合运用.
    14、6
    【解析】
    根据正弦函数的定义得出sinA=,即,即可得出AB的值.
    【详解】
    ∵sinA=,即,
    ∴AB=1,
    故答案为1.
    【点睛】
    本题考查了解直角三角形,熟练掌握正弦函数的定义是解题的关键.
    15、1
    【解析】
    据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b
    即可.
    【详解】
    ∵点A(a,3)与点B(﹣4,b)关于原点对称,
    ∴a=4,b=﹣3,
    ∴a+b=1,
    故选D.
    【点睛】
    考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.
    16、
    【解析】
    试题分析:根据因式分解的方法,先提公因式,再根据平方差公式分解:.
    考点:因式分解
    17、
    【解析】
    试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.
    故答案为x>1.
    18、1.1.
    【解析】
    过点D作DO⊥AH于点O,先证明△ABC∽△AOD得出=,再根据已知条件求出AO,则OH=AH-AO=DG.
    【详解】
    解:过点D作DO⊥AH于点O,如图:

    由题意得CB∥DO,
    ∴△ABC∽△AOD,
    ∴=,
    ∵∠CAB=53°,tan53°=,
    ∴tan∠CAB==,
    ∵AB=1.74m,
    ∴CB=1.31m,
    ∵四边形DGHO为长方形,
    ∴DO=GH=3.05m,OH=DG,
    ∴=,
    则AO=1.1875m,
    ∵BH=AB=1.75m,
    ∴AH=3.5m,
    则OH=AH-AO≈1.1m,
    ∴DG≈1.1m.
    故答案为1.1.
    【点睛】
    本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=﹣60x+28000;(2)若售完这些商品,则商场可获得的最大利润是22000元;(3)商场应购进甲商品120件,乙商品80件,获利最大
    【解析】分析:(1)根据总利润=(甲的售价-甲的进价)×购进甲的数量+(乙的售价-乙的进价)×购进乙的数量代入列关系式,并化简即可;(2)根据总成本≤18000列不等式即可求出x的取值,再根据函数的增减性确定其最值问题;(3)把50<a<70分三种情况讨论:一次项x的系数大于0、等于0、小于0,根据函数的增减性得出结论.
    详解:
    (1)根据题意得:y=(160﹣80)x+(240﹣100)(200﹣x),
    =﹣60x+28000,
    则y与x的函数关系式为:y=﹣60x+28000;
    (2)80x+100(200﹣x)≤18000,
    解得:x≥100,
    ∴至少要购进100件甲商品,
    y=﹣60x+28000,
    ∵﹣60<0,
    ∴y随x的增大而减小,
    ∴当x=100时,y有最大值,
    y大=﹣60×100+28000=22000,
    ∴若售完这些商品,则商场可获得的最大利润是22000元;
    (3)y=(160﹣80+a)x+(240﹣100)(200﹣x) (100≤x≤120),
    y=(a﹣60)x+28000,
    ①当50<a<60时,a﹣60<0,y随x的增大而减小,
    ∴当x=100时,y有最大利润,
    即商场应购进甲商品100件,乙商品100件,获利最大,
    ②当a=60时,a﹣60=0,y=28000,
    即商场应购进甲商品的数量满足100≤x≤120的整数件时,获利最大,
    ③当60<a<70时,a﹣60>0,y随x的增大而增大,
    ∴当x=120时,y有最大利润,
    即商场应购进甲商品120件,乙商品80件,获利最大.
    点睛:本题是一次函数和一元一次不等式的综合应用,属于销售利润问题,在此类题中,要明确售价、进价、利润的关系式:单件利润=售价-进价,总利润=单个利润×数量;认真读题,弄清题中的每一个条件;对于最值问题,可利用一次函数的增减性来解决:形如y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
    20、无解.
    【解析】
    试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.
    试题解析:由①得x≥4,
    由②得x<1,
    ∴原不等式组无解,

    考点:解一元一次不等式;在数轴上表示不等式的解集.
    21、-5
    【解析】
    根据分式的运算法则以及实数的运算法则即可求出答案.
    【详解】
    当x=sin30°+2﹣1+时,
    ∴x=++2=3,
    原式=÷==﹣5.
    【点睛】
    本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
    22、29.8米.
    【解析】
    作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.
    【详解】
    解:如图,作,,
    由题意得:


    米,
    米,
    则米,
    答:这架无人飞机的飞行高度为米.

    【点睛】
    此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.
    23、(1)△ABC是“等高底”三角形;(1);(3)CD的值为,1,1.
    【解析】
    (1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.
    (1)点B是的重心,得到设 则
    根据勾股定理可得即可求出它们的比值.
    (3)分两种情况进行讨论:①当时和②当时.
    【详解】
    (1)△ABC是“等高底”三角形;
    理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,

    ∵∠ACB=30°,AC=6,

    ∴AD=BC=3,
    即△ABC是“等高底”三角形;
    (1)如图1,∵△ABC是“等高底”三角形,BC是“等底”,


    ∵△ABC关于BC所在直线的对称图形是 ,
    ∴∠ADC=90°,
    ∵点B是的重心,

    设 则
    由勾股定理得

    (3)①当时,
    Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,

    ∵“等高底”△ABC的“等底”为BC,l1∥l1,l1与l1之间的距离为1,.

    ∴BE=1,即EC=4,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
    ∴∠DCF=45°,

    ∵l1∥l1,

    ∴ 即


    Ⅱ.如图4,此时△ABC等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到,
    ∴是等腰直角三角形,

    ②当时,
    Ⅰ.如图5,此时△ABC是等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,


    Ⅱ.如图6,作于E,则



    ∴△ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,
    ∴∥l1,即直线与l1无交点,
    综上所述,CD的值为
    【点睛】
    属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.
    24、
    【解析】
    分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.
    详解:去分母,得.
    去括号,得.
    移项,得 .
    合并同类项,得 .
    系数化为1,得.
    经检验,原方程的解为.
    点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.
    25、(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析.
    【解析】
    (1)作OH⊥AB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明△OCE≌△OBH,根据全等三角形的性质证明;
    (2)证明△OCD≌△OBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;
    (3)①根据等腰三角形的性质、三角形内角和定理计算;
    ②延长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明.
    【详解】
    (1)作OH⊥AB于H,

    ∵AD、BC的垂直平分线相交于点O,
    ∴OD=OA,OB=OC,
    ∵△ABO是等边三角形,
    ∴OD=OC,∠AOB=60°,
    ∵∠AOB+∠COD=180°
    ∴∠COD=120°,
    ∵OE是边CD的中线,
    ∴OE⊥CD,
    ∴∠OCE=30°,
    ∵OA=OB,OH⊥AB,
    ∴∠BOH=30°,BH=AB,
    在△OCE和△BOH中,

    ∴△OCE≌△OBH,
    ∴OE=BH,
    ∴OE=AB;
    (2)∵∠AOB=90°,∠AOB+∠COD=180°,
    ∴∠COD=90°,
    在△OCD和△OBA中,

    ∴△OCD≌△OBA,
    ∴AB=CD,
    ∵∠COD=90°,OE是边CD的中线,
    ∴OE=CD,
    ∴OE=AB;
    (3)①∵∠OAD=α,OA=OD,
    ∴∠AOD=180°﹣2α,
    同理,∠BOC=180°﹣2β,
    ∵∠AOB+∠COD=180°,
    ∴∠AOD+∠COB=180°,
    ∴180°﹣2α+180°﹣2β=180°,
    整理得,α+β=90°;
    ②延长OE至F,使EF=OE,连接FD、FC,

    则四边形FDOC是平行四边形,
    ∴∠OCF+∠COD=180°,,
    ∴∠AOB=∠FCO,
    在△FCO和△AOB中,

    ∴△FCO≌△AOB,
    ∴FO=AB,
    ∴OE=FO=AB.
    【点睛】
    本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
    26、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.
    【解析】
    (1)①当AC=BC=2时,△ABC为等腰直角三角形;
    ②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
    (2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.
    【详解】
    (1)若△CEF与△ABC相似.
    ①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,

    此时D为AB边中点,AD=AC=.
    ②当AC=3,BC=4时,有两种情况:
    (I)若CE:CF=3:4,如答图2所示,

    ∵CE:CF=AC:BC,∴EF∥BC.
    由折叠性质可知,CD⊥EF,
    ∴CD⊥AB,即此时CD为AB边上的高.
    在Rt△ABC中,AC=3,BC=4,∴BC=1.
    ∴cosA=.∴AD=AC•cosA=3×=.
    (II)若CF:CE=3:4,如答图3所示.
    ∵△CEF∽△CAB,∴∠CEF=∠B.
    由折叠性质可知,∠CEF+∠ECD=90°.
    又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.
    同理可得:∠B=∠FCD,CD=BD.∴AD=BD.
    ∴此时AD=AB=×1=.
    综上所述,当AC=3,BC=4时,AD的长为或.
    (2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:
    如图所示,连接CD,与EF交于点Q.
    ∵CD是Rt△ABC的中线
    ∴CD=DB=AB,
    ∴∠DCB=∠B.
    由折叠性质可知,∠CQF=∠DQF=90°,
    ∴∠DCB+∠CFE=90°,
    ∵∠B+∠A=90°,
    ∴∠CFE=∠A,
    又∵∠ACB=∠ACB,
    ∴△CEF∽△CBA.
    27、(1)证明见解析;(2).
    【解析】
    先利用等腰三角形的性质得到,利用切线的性质得,则CE∥BD,然后证明得到BE=CE;
    作于F,如图,在Rt△OBC中利用正弦定义得到BC=5,所以,然后在Rt△BEF中通过解直角三角形可求出BE的长.
    【详解】
    证明:,,

    是的切线,



    平分,




    解:作于F,如图,
     的直径长8,





    在中,
    设,则,
    ,即,解得,

    故答案为(1)证明见解析;(2) .
    【点睛】
    本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形.

    相关试卷

    2023-2024学年湖北省随州市高新区大堰坡中学数学九年级第一学期期末考试试题含答案: 这是一份2023-2024学年湖北省随州市高新区大堰坡中学数学九年级第一学期期末考试试题含答案,共9页。试卷主要包含了如图,点A是反比例函数y=,把二次函数化为的形式是等内容,欢迎下载使用。

    湖北省随州市高新区大堰坡中学2023-2024学年数学八上期末达标测试试题含答案: 这是一份湖北省随州市高新区大堰坡中学2023-2024学年数学八上期末达标测试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知那么的值等于,下面的图形中,是轴对称图形的是,化简的结果是等内容,欢迎下载使用。

    湖北省随州市高新区大堰坡中学2022-2023学年数学七年级第二学期期末质量检测模拟试题含答案: 这是一份湖北省随州市高新区大堰坡中学2022-2023学年数学七年级第二学期期末质量检测模拟试题含答案,共7页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map