2022年黑龙江省哈尔滨南岗区重点中学中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有( )
A. B. C. D.
2.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )
A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104
3.下列实数中,最小的数是( )
A. B. C.0 D.
4.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是( )
A. B.
C. D.
5.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. B. C. D.
6.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为( )
A.1:2 B.1:3 C.1:4 D.1:1
7.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是( )
年龄/岁
13
14
15
16
频数
5
15
x
10- x
A.平均数、中位数 B.众数、方差 C.平均数、方差 D.众数、中位数
8.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于( )
A.13 B.14 C.15 D.16
9.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于( )
A.75° B.90° C.105° D.115°
10.在平面直角坐标系中,位于第二象限的点是( )
A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式:__________.
12.计算:(﹣)﹣2﹣2cos60°=_____.
13.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.
14.若关于x的函数与x轴仅有一个公共点,则实数k的值为 .
15.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).
16.分解因式: ____________.
三、解答题(共8题,共72分)
17.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)
18.(8分)计算:
19.(8分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.
(1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.
20.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
21.(8分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.
(1)如图1,连接AB′.
①若△AEB′为等边三角形,则∠BEF等于多少度.
②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.
(2)如图2,连接CB′,求△CB′F周长的最小值.
(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.
22.(10分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
证明:∽;
若,求的值;
如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.
23.(12分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?
24.我们知道中,如果,,那么当时,的面积最大为6;
(1)若四边形中,,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.
(2)已知四边形中,,求为多少时,四边形面积最大?并求出最大面积是多少?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据轴对称图形的概念求解.
【详解】
A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、不是轴对称图形,故此选项错误;
D、是轴对称图形,故此选项正确.
故选D.
【点睛】
此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:10700=1.07×104,
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、B
【解析】
根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.
【详解】
∵<-2<0<,
∴最小的数是-π,
故选B.
【点睛】
此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
4、A
【解析】
根据题意,将运动过程分成两段.分段讨论求出解析式即可.
【详解】
∵BD=2,∠B=60°,
∴点D到AB距离为,
当0≤x≤2时,
y=;
当2≤x≤4时,y=.
根据函数解析式,A符合条件.
故选A.
【点睛】
本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.
5、C
【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.
考点:用列表法(或树形图法)求概率.
6、B
【解析】
根据中位线定理得到DE∥BC,DE=BC,从而判定△ADE∽△ABC,然后利用相似三角形的性质求解.
【详解】
解:∵D、E分别为△ABC的边AB、AC上的中点,
∴DE是△ABC的中位线,
∴DE∥BC,DE=BC,
∴△ADE∽△ABC,
∴△ADE的面积:△ABC的面积==1:4,
∴△ADE的面积:四边形BCED的面积=1:3;
故选B.
【点睛】
本题考查三角形中位线定理及相似三角形的判定与性质.
7、D
【解析】
由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定.
【详解】
∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,
∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,
∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化.
故选D.
8、D
【解析】
由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.
【详解】
解:∵MN是线段AB的垂直平分线,
∴AD=BD,
∵AB=AC=10,
∴BD+CD=AD+CD=AC=10,
∴△BCD的周长=AC+BC=10+6=16,故选D.
【点睛】
此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.
9、C
【解析】
分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.
详解:∵AB∥EF,
∴∠BDE=∠E=45°,
又∵∠A=30°,
∴∠B=60°,
∴∠1=∠BDE+∠B=45°+60°=105°,
故选C.
点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
10、D
【解析】
点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.
【详解】
根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,故选:D.
【点睛】
本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3(m-1)2
【解析】
试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.
故答案为:3(m-1)2
点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).
12、3
【解析】
按顺序先进行负指数幂的运算、代入特殊角的三角函数值,然后再进行减法运算即可.
【详解】
(﹣)﹣2﹣2cos60°
=4-2×
=3,
故答案为3.
【点睛】
本题考查了实数的运算,涉及了负指数幂、特殊角的三角函数值,熟练掌握相关的运算法则是解题的关键.
13、1或1
【解析】
由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.
【详解】
∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,
∴这两圆内切,
∴若大圆的半径为4,则另一个圆的半径为:4-3=1,
若小圆的半径为4,则另一个圆的半径为:4+3=1.
故答案为:1或1
【点睛】
此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.
14、0或-1。
【解析】由于没有交待是二次函数,故应分两种情况:
当k=0时,函数是一次函数,与x轴仅有一个公共点。
当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即。
综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1。
15、10海里.
【解析】
本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程.
【详解】
由已知可得:AC=60×0.5=30海里,
又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,
∴∠BAC=90°,
又∵乙船正好到达甲船正西方向的B点,
∴∠C=30°,
∴AB=AC•tan30°=30×=10海里.
答:乙船的路程为10海里.
故答案为10海里.
【点睛】
本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.
16、
【解析】
试题分析:根据因式分解的方法,先提公因式,再根据平方差公式分解:.
考点:因式分解
三、解答题(共8题,共72分)
17、(20-5)千米.
【解析】
分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.
详解:过点B作BD⊥ AC,
依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
∵BD⊥AC,
∴∠ABD=30°,∠CBD=53°,
在Rt△ABD中,设AD=x,
∴tan∠ABD=
即tan30°=,
∴BD=x,
在Rt△DCB中,
∴tan∠CBD=
即tan53°=,
∴CD=
∵CD+AD=AC,
∴x+=13,解得,x=
∴BD=12-,
在Rt△BDC中,
∴cos∠CBD=tan60°=,
即:BC=(千米),
故B、C两地的距离为(20-5)千米.
点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
18、-1
【解析】
先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.
【详解】
原式=1﹣4﹣+1﹣=﹣1.
【点睛】
本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.
19、(1)见解析;(2)AC=1.
【解析】
(1)要证明DB为⊙O的切线,只要证明∠OBD=90即可.
(2)根据已知及直角三角形的性质可以得到PD=2BD=2DA=2,再利用等角对等边可以得到AC=AP,这样求得AP的值就得出了AC的长.
【详解】
(1)证明:连接OD;
∵PA为⊙O切线,
∴∠OAD=90°;
在△OAD和△OBD中,
,
∴△OAD≌△OBD,
∴∠OBD=∠OAD=90°,
∴OB⊥BD
∴DB为⊙O的切线
(2)解:在Rt△OAP中;
∵PB=OB=OA,
∴OP=2OA,
∴∠OPA=10°,
∴∠POA=60°=2∠C,
∴PD=2BD=2DA=2,
∴∠OPA=∠C=10°,
∴AC=AP=1.
【点睛】
本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.
20、软件升级后每小时生产1个零件.
【解析】
分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.
详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,
根据题意得:,
解得:x=60,
经检验,x=60是原方程的解,且符合题意,
∴(1+)x=1.
答:软件升级后每小时生产1个零件.
点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
21、(1)①∠BEF=60°;②A B'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.
【解析】
(1)①当△AEB′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF= ∠BE B′= ×120°=60°;②依据AE=B′E,可得∠EA B′=∠E B′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BA B′,进而得出EF∥A B′;
(2)由折叠可得,CF+ B′F=CF+BF=BC=10,依据B′E+ B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;
(3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.
【详解】
(1)①当△AE B′为等边三角形时,∠AE B′=60°,
由折叠可得,∠BEF=∠BE B′=×120°=60°,
故答案为60;
②A B′∥EF,
证明:∵点E是AB的中点,
∴AE=BE,
由折叠可得BE=B′E,
∴AE=B′E,
∴∠EA B′=∠E B′A,
又∵∠BEF=∠B′EF,
∴∠BEF=∠BA B′,
∴EF∥A B′;
(2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,
∴CF+ B′F=CF+BF=BC=10,
∵B′E+ B′C≥CE,
∴B′C≥CE﹣B′E=5﹣5,
∴B′C最小值为5﹣5,
∴△CB′F周长的最小值=10+5﹣5=5+5;
(3)如图,连接A B′,易得∠A B′B=90°,
将△AB B′和△AP B′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,
由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,
由AB=10,B B′=6,可得A B′=8,
∴QM=QN=A B′=8,
设P B′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.
∵∠BQP=90°,
∴22+(8﹣x)2=(6+x)2,
解得:x=,
∴P B′=x=.
【点睛】
本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
22、(1)证明见解析;(2);(3).
【解析】
由余角的性质可得,即可证∽;
由相似三角形的性质可得,由等腰三角形的性质可得,即可求的值;
由题意可证∽,可得,可求,由等腰三角形的性质可得AE平分,可证,可得是等腰直角三角形,即可求AG的长.
【详解】
证明:,
又,
又,
∽
∽,
又,,
如图,延长AD与BG的延长线交于H点
,
∽
∴
,由可知≌
,
,
代入上式可得,
∽,
,,
∴
,,
平分
又平分,
,
是等腰直角三角形.
∴.
【点睛】
本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.
23、每台电脑0.5万元;每台电子白板1.5万元.
【解析】
先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.
【详解】
设每台电脑x万元,每台电子白板y万元.
根据题意,得:
解得,
答:每台电脑0.5万元,每台电子白板1.5万元.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.
24、 (1)当,时有最大值1;(2)当时,面积有最大值32.
【解析】
(1)由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,由此即可解决问题.
(2)设BD=x,由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题.
【详解】
(1) 由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
最大面积为×6×(16-6)=1.
故当,时有最大值1;
(2)当,时有最大值,
设, 由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
∴抛物线开口向下
∴当 时,面积有最大值32.
【点睛】
本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.
黑龙江省哈尔滨市南岗区萧红中学2021-2022学年中考数学押题卷含解析: 这是一份黑龙江省哈尔滨市南岗区萧红中学2021-2022学年中考数学押题卷含解析,共18页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
黑龙江省哈尔滨市南岗区市级名校2021-2022学年中考押题数学预测卷含解析: 这是一份黑龙江省哈尔滨市南岗区市级名校2021-2022学年中考押题数学预测卷含解析,共23页。试卷主要包含了下列各式计算正确的是等内容,欢迎下载使用。
黑龙江省哈尔滨市达标名校2021-2022学年中考押题数学预测卷含解析: 这是一份黑龙江省哈尔滨市达标名校2021-2022学年中考押题数学预测卷含解析,共19页。试卷主要包含了若关于x的一元二次方程x,计算4×的结果等于等内容,欢迎下载使用。