![2022年广东省揭西县第三华侨中学中考数学最后一模试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13337637/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年广东省揭西县第三华侨中学中考数学最后一模试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13337637/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年广东省揭西县第三华侨中学中考数学最后一模试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13337637/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年广东省揭西县第三华侨中学中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是( )
A. B. C. D.
2.下列运算正确的是( )
A. B. =﹣3 C.a•a2=a2 D.(2a3)2=4a6
3.等腰三角形底角与顶角之间的函数关系是( )
A.正比例函数 B.一次函数 C.反比例函数 D.二次函数
4.下列几何体中,主视图和俯视图都为矩形的是( )
A. B. C. D.
5.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).
A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
C.线段EF的长不变 D.线段EF的长不能确定
6.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是( )
A.75° B.65° C.60° D.50°
7.在3,0,-2,- 四个数中,最小的数是( )
A.3 B.0 C.-2 D.-
8.下列命题正确的是( )
A.对角线相等的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的平行四边形是菱形
D.对角线互相垂直且相等的四边形是正方形
9.如图,不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
10.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )
A.80° B.90° C.100° D.102°
二、填空题(共7小题,每小题3分,满分21分)
11.如图,扇形OAB的圆心角为30°,半径为1,将它沿箭头方向无滑动滚动到O′A′B′的位置时,则点O到点O′所经过的路径长为_____.
12.已知直线m∥n,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若∠1=20°,则∠2=_____度.
13.化简:=_____.
14.如果分式的值为0,那么x的值为___________.
15.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是_________.
16.请写出一个比2大且比4小的无理数:________.
17.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m的值为___________.
三、解答题(共7小题,满分69分)
18.(10分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.
(1)求这条抛物线的表达式和顶点P的坐标;
(2)点E在抛物线的对称轴上,且,求点E的坐标;
(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,,求点Q的坐标.
19.(5分)已知PA与⊙O相切于点A,B、C是⊙O上的两点
(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小
(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小
20.(8分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.
根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.
21.(10分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,,求末端操作器节点到地面直线的距离.(结果保留根号)
22.(10分)如图所示,在中,,
(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)
(2)连接AP当为多少度时,AP平分.
23.(12分)解方程
(1)x1﹣1x﹣1=0
(1)(x+1)1=4(x﹣1)1.
24.(14分)为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:
(1)本次共抽查了八年级学生多少人;
(2)请直接将条形统计图补充完整;
(3)在扇形统计图中,1〜1.5小时对应的圆心角是多少度;
(4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.5〜1.5小时的有多少人?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
函数→一次函数的图像及性质
2、D
【解析】
试题解析:A. 与不是同类二次根式,不能合并,故该选项错误;
B.,故原选项错误;
C. ,故原选项错误;
D. ,故该选项正确.
故选D.
3、B
【解析】
根据一次函数的定义,可得答案.
【详解】
设等腰三角形的底角为y,顶角为x,由题意,得
x+2y=180,
所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,
故选B.
【点睛】
本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.
4、B
【解析】
A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;
B、主视图为矩形,俯视图为矩形,故B选项正确;
C、主视图,俯视图均为圆,故C选项错误;
D、主视图为矩形,俯视图为三角形,故D选项错误.
故选:B.
5、C
【解析】
因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
【详解】
如图,连接AR,
∵E、F分别是AP、RP的中点,
∴EF为△APR的中位线,
∴EF= AR,为定值.
∴线段EF的长不改变.
故选:C.
【点睛】
本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
6、B
【解析】
因为AB是⊙O的直径,所以求得∠ADB=90°,进而求得∠B的度数,又因为∠B=∠C,所以∠C的度数可求出.
解:∵AB是⊙O的直径,
∴∠ADB=90°.
∵∠BAD=25°,
∴∠B=65°,
∴∠C=∠B=65°(同弧所对的圆周角相等).
故选B.
7、C
【解析】
根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【详解】
因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,
所以,
所以最小的数是,
故选C.
【点睛】
此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.
8、C
【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
详解:对角线互相平分的四边形是平行四边形,A错误;
对角线相等的平行四边形是矩形,B错误;
对角线互相垂直的平行四边形是菱形,C正确;
对角线互相垂直且相等的平行四边形是正方形;
故选:C.
点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
9、B
【解析】
首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
【详解】
解:解第一个不等式得:x>-1;
解第二个不等式得:x≤1,
在数轴上表示,
故选B.
【点睛】
此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
10、A
【解析】
分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.
详解:∵AB∥CD.
∴∠A=∠3=40°,
∵∠1=60°,
∴∠2=180°∠1−∠A=80°,
故选:A.
点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
点O到点O′所经过的路径长分三段,先以A为圆心,1为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可.
【详解】
解:∵扇形OAB的圆心角为30°,半径为1,
∴AB弧长=
∴点O到点O′所经过的路径长=
故答案为:
【点睛】
本题考查了弧长公式:.也考查了旋转的性质和圆的性质.
12、1
【解析】
根据平行线的性质即可得到∠2=∠ABC+∠1,据此进行计算即可.
【详解】
解:∵直线m∥n,
∴∠2=∠ABC+∠1=30°+20°=1°,
故答案为:1.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
13、-6
【解析】
根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:
【详解】
,
故答案为-6
14、4
【解析】
∵,
∴x-4=0,x+2≠0,
解得:x=4,
故答案为4.
15、
【解析】
试题解析:∵四边形ABCD是矩形,
∵AE⊥BD,
∴△ABE∽△ADB,
∵E是BC的中点,
过F作FG⊥BC于G,
故答案为
16、(或)
【解析】
利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可
【详解】
设无理数为,,所以x的取值在4~16之间都可,故可填
【点睛】
本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键
17、3
【解析】
设过点A(2,0)和点B(0,2)的直线的解析式为:,
则 ,解得: ,
∴直线AB的解析式为:,
∵点C(-1,m)在直线AB上,
∴,即.
故答案为3.
点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.
三、解答题(共7小题,满分69分)
18、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.
【解析】
(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;
(2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;
(3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.
【详解】
解:(1)抛物线解析式为,
即,
,
顶点P的坐标为;
(2)抛物线的对称轴为直线,
设,
,
,解得,
E点坐标为;
(3)直线交x轴于F,作MN⊥直线x=2于H,如图,
,
而,
,
设,则,
在中,,
,
整理得,解得(舍去),,
Q点的坐标为.
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.
19、(1)∠P=50°;(2)∠P=45°.
【解析】
(1)连接OB,根据切线长定理得到PA=PB,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可;
(2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB⊥PA,根据等腰直角三角形的性质解答.
【详解】
解:(1)如图①,连接OB.
∵PA、PB与⊙O相切于A、B点,
∴PA=PB,
∴∠PAO=∠PBO=90°
∴∠PAB=∠PBA,
∵∠BAC=25°,
∴∠PBA=∠PAB=90°一∠BAC=65°
∴∠P=180°-∠PAB-∠PBA=50°;
(2)如图②,连接AB、AD,
∵∠ACB=90°,
∴AB是的直径,∠ADB=90·
∵PD=DB,
∴PA=AB.
∵PA与⊙O相切于A点
∴AB⊥PA,
∴∠P=∠ABP=45°.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.
20、(1);(2)
【解析】
(1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P(恰好取到红枣粽子)=.
(2)由题意可得,出现的所有可能性是:
(A,A)、(A,B)、(A,C)、(A,C)、
(A,A)、(A,B)、(A,C)、(A,C)、
(B,A)、(B,B)、(B,C)、(B,C)、
(C,A)、(C,B)、(C,C)、(C,C),
∴由上表可知,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P(取到一个红枣粽子,一个豆沙粽子)=.
考点:列表法与树状图法;概率公式.
21、()cm.
【解析】
作BG⊥CD,垂足为G,BH⊥AF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.
【详解】
如图,作BG⊥CD,垂足为G,BH⊥AF,垂足为H,
在中,∠BCD=60°,BC=60cm,
∴,
在中,∠BAF=45°,AB=60cm,
∴,
∴D到L的距离.
【点睛】
本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.
22、(1)详见解析;(2)30°.
【解析】
(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;
(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.
【详解】
(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
∵EF为AB的垂直平分线,
∴PA=PB,
∴点P即为所求.
(2)如图,连接AP,
∵,
∴,
∵AP是角平分线,
∴,
∴,
∵,
∴∠PAC+∠PAB+∠B=90°,
∴3∠B=90°,
解得:∠B=30°,
∴当时,AP平分.
【点睛】
本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.
23、(1)x1=1+,x1=1﹣;(1)x1=3,x1=.
【解析】
(1)配方法解;
(1)因式分解法解.
【详解】
(1)x1﹣1x﹣1=2,
x1﹣1x+1=1+1,
(x﹣1)1=3,
x﹣1= ,
x=1,
x1=1,x1=1﹣,
(1)(x+1)1=4(x﹣1)1.
(x+1)1﹣4(x﹣1)1=2.
(x+1)1﹣[1(x﹣1)]1=2.
(x+1)1﹣(1x﹣1)1=2.
(x+1﹣1x+1)(x+1+1x﹣1)=2.
(﹣x+3)(3x﹣1)=2.
x1=3,x1=.
【点睛】
考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.
24、(1)本次共抽查了八年级学生是150人;(2)条形统计图补充见解析;(3)108;(4)估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
【解析】
(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;
(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;
(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;
(4)利用总人数12000乘以对应的比例即可.
【详解】
(1)本次共抽查了八年级学生是:30÷20%=150人;
故答案为150;
(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=1.
(3)人均阅读时间在1~1.5小时对应的圆心角度数是:
故答案为108;
(4) (人),
答:估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
2024年广东省汕头市金平区华侨中学中考数学一模试卷(含解析): 这是一份2024年广东省汕头市金平区华侨中学中考数学一模试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省江门市蓬江区华侨中学中考数学一模试卷(含解析): 这是一份2024年广东省江门市蓬江区华侨中学中考数学一模试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022届广东省揭西县第三华侨中学中考数学押题卷含解析: 这是一份2022届广东省揭西县第三华侨中学中考数学押题卷含解析,共20页。