2022年广东省佛山市顺德区碧桂园校中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列四个几何体,正视图与其它三个不同的几何体是( )
A. B.
C. D.
2.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为( )
A.(1+40%)×30%x B.(1+40%)(1﹣30%)x
C. D.
3.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是( )
A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20
4.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )
A.x>1 B.x≥1 C.x>3 D.x≥3
5.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )
A.小明中途休息用了20分钟
B.小明休息前爬山的平均速度为每分钟70米
C.小明在上述过程中所走的路程为6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
6.下列各数中负数是( )
A.﹣(﹣2) B.﹣|﹣2| C.(﹣2)2 D.﹣(﹣2)3
7.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1
C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1
8.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为( )
A.﹣ B.﹣3 C. D.3
9.如图,在中,分别在边边上,已知,则的值为( )
A. B. C. D.
10.计算6m6÷(-2m2)3的结果为( )
A. B. C. D.
11.在,0,-1,这四个数中,最小的数是( )
A. B.0 C. D.-1
12.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是( )
A.0 B.1 C.2 D.3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:﹣1﹣2=_____.
14.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)
15.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.
16.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.
17.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.
18.已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=_____(用、 表示).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).
(1)求这个抛物线的解析式;
(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.
20.(6分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
21.(6分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,求的值.
22.(8分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.
求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
23.(8分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图①中m的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.
24.(10分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
25.(10分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.
(1)连接CF,求证:四边形AECF是菱形;
(2)若E为BC中点,BC=26,tan∠B=,求EF的长.
26.(12分)在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.
求证:;
求证:四边形BDFG为菱形;
若,,求四边形BDFG的周长.
27.(12分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据几何体的三视图画法先画出物体的正视图再解答.
【详解】
解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,
而C选项的几何体是由上方2个正方形、下方2个正方形构成的,
故选:C.
【点睛】
此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.
2、D
【解析】
根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.
【详解】
由题意可得,
去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=,
故选:D.
【点睛】
本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
3、A
【解析】
若反比例函数与三角形交于A(4,5),则k=20;
若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.
故选A.
4、C
【解析】
试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,
则该不等式组的解集是x>1.
故选C.
考点:在数轴上表示不等式的解集.
5、C
【解析】
根据图像,结合行程问题的数量关系逐项分析可得出答案.
【详解】
从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;
小明休息前爬山的平均速度为:(米/分),B正确;
小明在上述过程中所走的路程为3800米,C错误;
小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:米/分,D正确.
故选C.
考点:函数的图象、行程问题.
6、B
【解析】
首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.
【详解】
A、-(-2)=2,是正数;
B、-|-2|=-2,是负数;
C、(-2)2=4,是正数;
D、-(-2)3=8,是正数.
故选B.
【点睛】
此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.
7、B
【解析】
∵函数y=-2x2的顶点为(0,0),
∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,
故选B.
【点睛】
二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.
8、B
【解析】
设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.
【详解】
设该点的坐标为(a,b),则|b|=1|a|,
∵点(a,b)在正比例函数y=kx的图象上,
∴k=±1.
又∵y值随着x值的增大而减小,
∴k=﹣1.
故选:B.
【点睛】
本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.
9、B
【解析】
根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.
【详解】
解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
故选:B.
【点睛】
本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.
10、D
【解析】
分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案.
详解:原式=, 故选D.
点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键.
11、D
【解析】
试题分析:因为负数小于0,正数大于0,正数大于负数,所以在,0,-1,这四个数中,最小的数是-1,故选D.
考点:正负数的大小比较.
12、D
【解析】
根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.
【详解】
∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,
∴∠A=∠EBA,∠CBE=∠EBA,
∴∠A=∠CBE=∠EBA,
∵∠C=90°,
∴∠A+∠CBE+∠EBA=90°,
∴∠A=∠CBE=∠EBA=30°,故①选项正确;
∵∠A=∠EBA,∠EDB=90°,
∴AD=BD,故②选项正确;
∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,
∴EC=ED(角平分线上的点到角的两边距离相等),
∴点E到AB的距离等于CE的长,故③选项正确,
故正确的有3个.
故选D.
【点睛】
此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-3
【解析】
-1-2=-1+(-2)=-(1+2)=-3,
故答案为-3.
14、或
【解析】
因为,, ,所以 ,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.
【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.
15、 .
【解析】
延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.
【详解】
解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.
∵AC=6,CF=1,
∴AF=AC-CF=4,
∵∠A=60°,∠AMF=90°,
∴∠AFM=30°,
∴AM=AF=1,
∴FM==1 ,
∵FP=FC=1,
∴PM=MF-PF=1-1,
∴点P到边AB距离的最小值是1-1.
故答案为: 1-1.
【点睛】
本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P的位置.
16、4
【解析】
连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.
【详解】
如图,连接并延长交于G,连接并延长交于H,
∵点E、F分别是和的重心,
∴,,,,
∵,
∴,
∵,,
∴,
∵,
∴,
∴,
∴,
故答案为:4
【点睛】
本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.
17、61
【解析】
分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.
详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;
如图②:AM2=AC2+CM2=92+4=85;
如图:AM2=52+(4+2)2=61.
∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.
故答案为:61.
点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.
18、
【解析】
根据向量的三角形法则表示出,再根据BC、AD的关系解答.
【详解】
如图,
∵,,
∴=-=-,
∵AD∥BC,BC=2AD,
∴==(-)=-.
故答案为-.
【点睛】
本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、【小题1】 设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、 D(0,3)代入,得…………………………………………2分
即所求抛物线的解析式为:……………………………3分
【小题2】 如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①
设过A、E两点的一次函数解析式为:y=kx+b(k≠0),
∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得
∴点E坐标为(-2,3)………………………………………………………………4分
又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、
D(0,3),所以顶点C(-1,4)
∴抛物线的对称轴直线PQ为:直线x=-1, [中国教#&~@育出%版网]
∴点D与点E关于PQ对称,GD=GE……………………………………………②
分别将点A(1,0)、点E(-2,3)
代入y=kx+b,得:
解得:
过A、E两点的一次函数解析式为:
y=-x+1
∴当x=0时,y=1
∴点F坐标为(0,1)……………………5分
∴=2………………………………………③
又∵点F与点I关于x轴对称,
∴点I坐标为(0,-1)
∴……………………………………④
又∵要使四边形DFHG的周长最小,由于DF是一个定值,
∴只要使DG+GH+HI最小即可 ……………………………………6分
由图形的对称性和①、②、③,可知,
DG+GH+HF=EG+GH+HI
只有当EI为一条直线时,EG+GH+HI最小
设过E(-2,3)、I(0,-1)两点的函数解析式为:,
分别将点E(-2,3)、点I(0,-1)代入,得:
解得:
过I、E两点的一次函数解析式为:y=-2x-1
∴当x=-1时,y=1;当y=0时,x=-;
∴点G坐标为(-1,1),点H坐标为(-,0)
∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI
由③和④,可知:
DF+EI=
∴四边形DFHG的周长最小为. …………………………………………7分
【小题3】 如图⑤,
由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:
解得:,
过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);
由图可知,△AOM为直角三角形,且, ………………8分
要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论; ……………………………………………………………………………9分
①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………………………………………………………………………10分
②当∠PCM=90°时,CM=,若则,可求出
P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分
综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(-4,0)12分
【解析】
(1)直接利用三点式求出二次函数的解析式;
(2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,
由图形的对称性和,可知,HF=HI,GD=GE,
DG+GH+HF=EG+GH+HI
只有当EI为一条直线时,EG+GH+HI最小,即
,DF+EI=
即边形DFHG的周长最小为.
(3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)
20、(1)y=2x,OA=,
(2)是一个定值,,
(3)当时,E点只有1个,当时,E点有2个。
【解析】(1)把点A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.
OA=.
(2)是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时;
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…(5分),
∴,
当点P、Q在抛物线和直线上不同位置时,同理可得.①①
如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=OA=
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴,
∴OF=,
∴点F(,0),
设点B(x,),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴,
即,
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5
(求AB也可采用下面的方法)
设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得
k=,b=10,
∴,
∴,
∴(舍去),,
∴B(6,2),
∴AB=5
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.
设OE=x,则AE=﹣x (),
由△ABE∽△OED得,
∴
∴()
∴顶点为(,)
如答图3,
当时,OE=x=,此时E点有1个;
当时,任取一个m的值都对应着两个x值,此时E点有2个.
∴当时,E点只有1个
当时,E点有2个
21、
【解析】
根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.
【详解】
解:∵矩形沿直线AC折叠,点B落在点E处,
∴CE=BC,∠BAC=∠CAE,
∵矩形对边AD=BC,
∴AD=CE,
设AE、CD相交于点F,
在△ADF和△CEF中,
,
∴△ADF≌△CEF(AAS),
∴EF=DF,
∵AB∥CD,
∴∠BAC=∠ACF,
又∵∠BAC=∠CAE,
∴∠ACF=∠CAE,
∴AF=CF,
∴AC∥DE,
∴△ACF∽△DEF,
∴,
设EF=3k,CF=5k,
由勾股定理得CE=,
∴AD=BC=CE=4k,
又∵CD=DF+CF=3k+5k=8k,
∴AB=CD=8k,
∴AD:AB=(4k):(8k)=.
【点睛】
本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF和△DEF相似是解题的关键,也是本题的难点.
22、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.
(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.
【详解】
证明:(1)∵在平行四边形ABCD中,AD∥BC,
∴∠AEB=∠EAD.
∵AE=AB,
∴∠ABE=∠AEB.
∴∠ABE=∠EAD.
(2)∵AD∥BC,
∴∠ADB=∠DBE.
∵∠ABE=∠AEB,∠AEB=2∠ADB,
∴∠ABE=2∠ADB.
∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.
∴AB=AD.
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
23、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.
【解析】
(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.
【详解】
解:(Ⅰ)本次接受随机抽样调查的学生人数为: =50(人),
∵×100=31%,
∴图①中m的值为31.
故答案为50、31;
(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,
∴这组数据的众数为4;
∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,
∴这组数据的中位数是3;
由条形统计图可得=3.1,
∴这组数据的平均数是3.1.
(Ⅲ)1500×18%=410(人).
答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、(1)20%;(2)能.
【解析】
(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
【详解】
(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:该企业从2014年到2016年利润的年平均增长率为20%.
(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
所以该企业2017年的利润能超过3.4亿元.
【点睛】
此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
25、 (1)证明见解析;(2)EF=1.
【解析】
(1)如图1,利用折叠性质得EA=EC,∠1=∠2,再证明∠1=∠3得到AE=AF,则可判断四边形AECF为平行四边形,从而得到四边形AECF为菱形;
(2)作EH⊥AB于H,如图,利用四边形AECF为菱形得到AE=AF=CE=13,则判断四边形ABEF为平行四边形得到EF=AB,根据等腰三角形的性质得AH=BH,再在Rt△BEH中利用tanB==可计算出BH=5,从而得到EF=AB=2BH=1.
【详解】
(1)证明:如图1,
∵平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,
∴EA=EC,∠1=∠2,
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠2=∠3,
∴∠1=∠3,
∴AE=AF,
∴AF=CE,
而AF∥CE,
∴四边形AECF为平行四边形,
∵EA=EC,
∴四边形AECF为菱形;
(2)解:作EH⊥AB于H,如图,
∵E为BC中点,BC=26,
∴BE=EC=13,
∵四边形AECF为菱形,
∴AE=AF=CE=13,
∴AF=BE,
∴四边形ABEF为平行四边形,
∴EF=AB,
∵EA=EB,EH⊥AB,
∴AH=BH,
在Rt△BEH中,tanB==,
设EH=12x,BH=5x,则BE=13x,
∴13x=13,解得x=1,
∴BH=5,
∴AB=2BH=1,
∴EF=1.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了平行四边形的性质、菱形的判定与性质.
26、(1)证明见解析(2)证明见解析(3)1
【解析】
利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,
利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,
设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可.
【详解】
证明:,,
,
又为AC的中点,
,
又,
,
证明:,,
四边形BDFG为平行四边形,
又,
四边形BDFG为菱形,
解:设,则,,
在中,,
解得:,舍去,
,
菱形BDFG的周长为1.
【点睛】
本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.
27、-4
【解析】
分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.
详解:原式=-4+1-2×+-1=-4
点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.
2023年广东省佛山市顺德区中考数学一模试卷(含解析): 这是一份2023年广东省佛山市顺德区中考数学一模试卷(含解析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省佛山市顺德区中考数学适应性试卷(含解析): 这是一份2023年广东省佛山市顺德区中考数学适应性试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省佛山市顺德区中考数学三模试卷(含解析): 这是一份2023年广东省佛山市顺德区中考数学三模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。