|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年福建省厦门市湖滨中学中考四模数学试题含解析
    立即下载
    加入资料篮
    2022年福建省厦门市湖滨中学中考四模数学试题含解析01
    2022年福建省厦门市湖滨中学中考四模数学试题含解析02
    2022年福建省厦门市湖滨中学中考四模数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年福建省厦门市湖滨中学中考四模数学试题含解析

    展开
    这是一份2022年福建省厦门市湖滨中学中考四模数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为(  )
    A.0.637×10﹣5 B.6.37×10﹣6 C.63.7×10﹣7 D.6.37×10﹣7
    2.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:

    2
    6
    7
    7
    8

    2
    3
    4
    8
    8
    关于以上数据,说法正确的是( )
    A.甲、乙的众数相同 B.甲、乙的中位数相同
    C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差
    3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是(  )

    A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
    4.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )
    A. B. C. D.
    5.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有( )

    A.4 个 B.3 个 C.2 个 D.1 个
    6.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为(  )
    A.8.1×106 B.8.1×105 C.81×105 D.81×104
    7.(2011•黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是(  )

    A、2个 B、3个
    C、4个 D、5个
    8.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 (  )

    A.2 B.2 C.3 D.
    9.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为(  )

    A.五丈 B.四丈五尺 C.一丈 D.五尺
    10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
    A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
    C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.

    12.如图,菱形的边,,是上一点,,是边上一动点,将梯形沿直线折叠,的对应点为,当的长度最小时,的长为__________.

    13.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.

    14.如图,在中,于点,于点,为边的中点,连接,则下列结论:①,②,③为等边三角形,④当时,.请将正确结论的序号填在横线上__.

    15.写出一个大于3且小于4的无理数:___________.
    16.如果2,那么=_____(用向量,表示向量).
    17.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
    (1)求该抛物线的解析式;
    (2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
    (3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
    19.(5分)如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位同学对条件进行分析后,甲得到结论①:“E是BC中点” .乙得到结论②:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.

    20.(8分)小王是“新星厂”的一名工人,请你阅读下列信息:
    信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;
    信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
    生产甲产品数(件)
    生产乙产品数(件)
    所用时间(分钟)
    10
    10
    350
    30
    20
    850
    信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.
    信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:
    (1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;
    (2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?
    21.(10分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.求证:BC是⊙O的切线;已知AD=3,CD=2,求BC的长.

    22.(10分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?
    23.(12分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)

    24.(14分)解不等式组:,并把解集在数轴上表示出来.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.00000637的小数点向右移动6位得到6.37
    所以0.00000637用科学记数法表示为6.37×10﹣6,
    故选B.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、D
    【解析】
    分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.
    【详解】
    甲:数据7出现了2次,次数最多,所以众数为7,
    排序后最中间的数是7,所以中位数是7,

    =4.4,
    乙:数据8出现了2次,次数最多,所以众数为8,
    排序后最中间的数是4,所以中位数是4,

    =6.4,
    所以只有D选项正确,
    故选D.
    【点睛】
    本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.
    3、B
    【解析】
    分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.
    详解:乙和△ABC全等;理由如下:
    在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
    所以乙和△ABC全等;
    在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
    所以丙和△ABC全等;
    不能判定甲与△ABC全等;
    故选B.
    点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    4、A
    【解析】
    让黄球的个数除以球的总个数即为所求的概率.
    【详解】
    解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.
    故选:A.
    【点睛】
    本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
    5、C
    【解析】
    由∠BEG=45°知∠BEA>45°,结合∠AEF=90°得∠HEC<45°,据此知 HC<EC,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据 SAS 推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH 不相似,即可判断④.
    【详解】
    解:∵四边形 ABCD 是正方形,
    ∴AB=BC=CD,
    ∵AG=GE,
    ∴BG=BE,
    ∴∠BEG=45°,
    ∴∠BEA>45°,
    ∵∠AEF=90°,
    ∴∠HEC<45°,
    ∴HC<EC,
    ∴CD﹣CH>BC﹣CE,即 DH>BE,故①错误;
    ∵BG=BE,∠B=90°,
    ∴∠BGE=∠BEG=45°,
    ∴∠AGE=135°,
    ∴∠GAE+∠AEG=45°,
    ∵AE⊥EF,
    ∴∠AEF=90°,
    ∵∠BEG=45°,
    ∴∠AEG+∠FEC=45°,
    ∴∠GAE=∠FEC,
    在△GAE 和△CEF 中,
    ∵AG=CE,
    ∠GAE=∠CEF,
    AE=EF,
    ∴△GAE≌△CEF(SAS)),
    ∴②正确;
    ∴∠AGE=∠ECF=135°,
    ∴∠FCD=135°﹣90°=45°,
    ∴③正确;
    ∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,
    ∴∠FEC<45°,
    ∴△GBE 和△ECH 不相似,
    ∴④错误;
    故选:C.
    【点睛】
    本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.
    6、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    810 000=8.1×1.
    故选B.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    7、B
    【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
    解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;
    ②根据图示知,该函数图象的开口向上,
    ∴a>0;
    故②正确;
    ③又对称轴x=-=1,
    ∴<0,
    ∴b<0;
    故本选项错误;
    ④该函数图象交于y轴的负半轴,
    ∴c<0;
    故本选项错误;
    ⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
    当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.
    所以①②⑤三项正确.
    故选B.
    8、A
    【解析】
    连接BD,交AC于O,
    ∵正方形ABCD,
    ∴OD=OB,AC⊥BD,
    ∴D和B关于AC对称,
    则BE交于AC的点是P点,此时PD+PE最小,
    ∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),
    ∴此时PD+PE最小,
    此时PD+PE=BE,
    ∵正方形的面积是12,等边三角形ABE,
    ∴BE=AB=,
    即最小值是2,
    故选A.

    【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.
    9、B
    【解析】
    【分析】根据同一时刻物高与影长成正比可得出结论.
    【详解】设竹竿的长度为x尺,
    ∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
    ∴,
    解得x=45(尺),
    故选B.
    【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.
    10、C
    【解析】
    试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
    【详解】
    .故选C.
    解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
    1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    【分析】如图,过点A作AD⊥x轴,垂足为D,根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,可以求得a的值,进而求得k的值即可.
    【详解】如图,过点A作AD⊥x轴,垂足为D,
    ∵tan∠AOC==,∴设点A的坐标为(1a,a),
    ∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,
    ∴a=1a﹣2,得a=1,
    ∴1=,得k=1,
    故答案为:1.

    【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    12、
    【解析】
    如图所示,过点作,交于点.

    在菱形中,
    ∵,且,所以为等边三角形,

    根据“等腰三角形三线合一”可得
    ,因为,所以.
    在中,根据勾股定理可得,.
    因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为.
    所以,所以,所以.
    点睛:A′为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A′点在以P为圆心、AP为半径的圆上,当C、A′、P在同一条直线时CA′取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.
    13、2﹣
    【解析】
    过点F作FE⊥AD于点E,则AE=AD=AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF-S△ADF可得出其面积,再根据S阴影=2(S扇形BAF-S弓形AF)即可得出结论
    【详解】
    如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为2,
    ∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.
    ∴S弓形AF=S扇形ADF-S△ADF=,
    ∴ S阴影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.

    【点睛】
    本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.
    14、①③④
    【解析】
    ①根据直角三角形斜边上的中线等于斜边的一半可判断①;
    ②先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②;
    ③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③;
    ④当∠ABC=45°时,∠BCN=45°,进而判断④.
    【详解】
    ①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,
    ∴PM=BC,PN=BC,
    ∴PM=PN,正确;
    ②在△ABM与△ACN中,
    ∵∠A=∠A,∠AMB=∠ANC=90°,
    ∴△ABM∽△ACN,
    ∴,错误;
    ③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,
    ∴∠ABM=∠ACN=30°,
    在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,
    ∵点P是BC的中点,BM⊥AC,CN⊥AB,
    ∴PM=PN=PB=PC,
    ∴∠BPN=2∠BCN,∠CPM=2∠CBM,
    ∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,
    ∴∠MPN=60°,
    ∴△PMN是等边三角形,正确;
    ④当∠ABC=45°时,∵CN⊥AB于点N,
    ∴∠BNC=90°,∠BCN=45°,
    ∵P为BC中点,可得BC=PB=PC,故④正确.
    所以正确的选项有:①③④
    故答案为①③④
    【点睛】
    本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.
    15、如等,答案不唯一.
    【解析】
    本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.
    16、
    【解析】
    ∵2(+)=+,∴2+2=+,∴=-2,
    故答案为.
    点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
    17、4.027
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:4 0270 0000用科学记数法表示是4.027×1.
    故答案为4.027×1.
    点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    三、解答题(共7小题,满分69分)
    18、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
    【解析】
    试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;
    (2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
    (3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
    试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
    ∴B(3,0),C(0,3),
    把B、C坐标代入抛物线解析式可得,解得,
    ∴抛物线解析式为y=x2﹣4x+3;
    (2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
    ∴抛物线对称轴为x=2,P(2,﹣1),
    设M(2,t),且C(0,3),
    ∴MC=,MP=|t+1|,PC=,
    ∵△CPM为等腰三角形,
    ∴有MC=MP、MC=PC和MP=PC三种情况,
    ①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
    ②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
    ③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);
    综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
    (3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,

    设E(x,x2﹣4x+3),则F(x,﹣x+3),
    ∵0<x<3,
    ∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
    ∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,
    ∴当x=时,△CBE的面积最大,此时E点坐标为(,),
    即当E点坐标为(,)时,△CBE的面积最大.
    考点:二次函数综合题.
    19、①结论一正确,理由见解析;②结论二正确,S四QEFP= S
    【解析】
    试题分析:
    (1)由已知条件易得△BEQ∽△DAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ=1:2,再结合AD=BC即可得到BE:BC=1:2,从而可得点E是BC的中点,由此即可说明甲同学的结论①成立;
    (2)同(1)易证点F是CD的中点,由此可得EF∥BD,EF=BD,从而可得△CEF∽△CBD,则可得得到S△CEF=S△CBD=S平行四边形ABCD=S,结合S四边形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,结合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四边形QEFP= S△AEF- S△AQP=S,从而说明乙的结论②正确;
    试题解析:
    甲和乙的结论都成立,理由如下:
    (1)∵在平行四边形ABCD中,AD∥BC,
    ∴△BEQ∽△DAQ,
    又∵点P、Q是线段BD的三等分点,
    ∴BE:AD=BQ:DQ=1:2,
    ∵AD=BC,
    ∴BE:BC=1:2,
    ∴点E是BC的中点,即结论①正确;
    (2)和(1)同理可得点F是CD的中点,
    ∴EF∥BD,EF=BD,
    ∴△CEF∽△CBD,
    ∴S△CEF=S△CBD=S平行四边形ABCD=S,
    ∵S四边形AECF=S△ACE+S△ACF=S平行四边形ABCD=S,
    ∴S△AEF=S四边形AECF-S△CEF=S,
    ∵EF∥BD,
    ∴△AQP∽△AEF,
    又∵EF=BD,PQ=BD,
    ∴QP:EF=2:3,
    ∴S△AQP=S△AEF=,
    ∴S四边形QEFP= S△AEF- S△AQP=S-=S,即结论②正确.
    综上所述,甲、乙两位同学的结论都正确.
    20、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
    【解析】
    (1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.
    (2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,分别求出甲乙两种生产多少件产品.
    【详解】
    (1)设生产一件甲种产品需x分,生产一件乙种产品需y分.
    由题意得:,
    解这个方程组得:,
    答:生产一件甲产品需要15分,生产一件乙产品需要20分.
    (2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.
    则生产甲种产品件,生产乙种产品件.
    ∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,
    又≥60,得x≥900,
    由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),
    则小王该月收入最多是1644+1900=3544(元),
    此时甲有=60(件),
    乙有:=555(件),
    答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
    【点睛】
    考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
    21、 (1)证明见解析
    (2)BC=
    【解析】
    (1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;
    (2)可证明△ABC∽△BDC,则,即可得出BC=.
    【详解】
    (1)∵AB是⊙O的切直径,
    ∴∠ADB=90°,
    又∵∠BAD=∠BED,∠BED=∠DBC,
    ∴∠BAD=∠DBC,
    ∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
    ∴∠ABC=90°,
    ∴BC是⊙O的切线;
    (2)解:∵∠BAD=∠DBC,∠C=∠C,
    ∴△ABC∽△BDC,
    ∴,即BC2=AC•CD=(AD+CD)•CD=10,
    ∴BC=.
    考点:1.切线的判定;2.相似三角形的判定和性质.
    22、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.
    【解析】
    (1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;
    (2)设每套运动服的售价为y元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%” 即可列不等式求解.
    【详解】
    (1)设商场第一次购进x套运动服,由题意得

    解这个方程,得
    经检验,是所列方程的根

    答:商场两次共购进这种运动服600套;
    (2)设每套运动服的售价为y元,由题意得

    解这个不等式,得
    答:每套运动服的售价至少是200元.
    【点睛】
    此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解.
    23、 (10-4)米
    【解析】
    延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.
    【详解】
    解:如图,延长OC,AB交于点P.
    ∵∠ABC=120°,
    ∴∠PBC=60°,
    ∵∠OCB=∠A=90°,
    ∴∠P=30°,
    ∵AD=20米,
    ∴OA=AD=10米,
    ∵BC=2米,
    ∴在Rt△CPB中,PC=BC•tan60°=米,PB=2BC=4米,
    ∵∠P=∠P,∠PCB=∠A=90°,
    ∴△PCB∽△PAO,
    ∴,
    ∴PA===米,
    ∴AB=PA﹣PB=()米.
    答:路灯的灯柱AB高应该设计为()米.

    24、无解.
    【解析】
    试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.
    试题解析:由①得x≥4,
    由②得x<1,
    ∴原不等式组无解,

    考点:解一元一次不等式;在数轴上表示不等式的解集.

    相关试卷

    福建省厦门市湖滨中学2022年中考联考数学试题含解析: 这是一份福建省厦门市湖滨中学2022年中考联考数学试题含解析,共22页。试卷主要包含了3的相反数是,的倒数是等内容,欢迎下载使用。

    2022年福建省厦门市四校联考中考数学模试卷含解析: 这是一份2022年福建省厦门市四校联考中考数学模试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中,最小的数是,下列运算正确的是等内容,欢迎下载使用。

    2021-2022学年福建省厦门市思明区湖滨中学中考数学四模试卷含解析: 这是一份2021-2022学年福建省厦门市思明区湖滨中学中考数学四模试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在平面直角坐标系中,A,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map