|试卷下载
搜索
    上传资料 赚现金
    2022年安徽省六安市七校联考中考三模数学试题含解析
    立即下载
    加入资料篮
    2022年安徽省六安市七校联考中考三模数学试题含解析01
    2022年安徽省六安市七校联考中考三模数学试题含解析02
    2022年安徽省六安市七校联考中考三模数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年安徽省六安市七校联考中考三模数学试题含解析

    展开
    这是一份2022年安徽省六安市七校联考中考三模数学试题含解析,共22页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )
    A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒
    2.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是( )
    A. B.
    C. D.
    3.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是(  )
    A.(﹣2,1) B.(﹣8,4)
    C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)
    4.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )

    A.30° B.15° C.18° D.20°
    5.下列图形中,既是轴对称图形又是中心对称图形的有(  )

    A.1个 B.2个 C.3个 D.4个
    6.一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是(  )
    A.4 B.5 C.10 D.11
    7.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为(  )

    A. B.2 C. D.3
    8.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为(  )

    A. B. C. D.
    9.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为(  )

    A.五丈 B.四丈五尺 C.一丈 D.五尺
    10.下列运算正确的是(  )
    A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2•x﹣3=x﹣1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是______.
    12.如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_____cm

    13.若一元二次方程有两个不相等的实数根,则k的取值范围是 .
    14.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.

    15.已知xy=3,那么的值为______ .
    16.分解因式:4a3b﹣ab=_____.
    三、解答题(共8题,共72分)
    17.(8分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)

    (1)此时小强头部E点与地面DK相距多少?
    (2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
    18.(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
    19.(8分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.

    20.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
    21.(8分)已知,抛物线(为常数).

    (1)抛物线的顶点坐标为( , )(用含的代数式表示);
    (2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;
    (3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 .
    22.(10分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
    (1)求抛物线解析式及顶点坐标;
    (2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
    (3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
    ②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

    23.(12分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
    求反比例函数和一次函数的解析式;直接写出当x>0时,的解集.点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
    24.如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,
    (1)判断△ABC的形状,并证明你的结论;
    (2)如图1,若BE=CE=,求⊙A的面积;
    (3)如图2,若tan∠CEF=,求cos∠C的值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.
    【详解】
    设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.
    故选B.
    【点睛】
    本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.
    2、C
    【解析】
    先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.
    【详解】
    小进跑800米用的时间为秒,小俊跑800米用的时间为秒,
    ∵小进比小俊少用了40秒,
    方程是,
    故选C.
    【点睛】
    本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.
    3、D
    【解析】
    根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.
    【详解】
    ∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,
    ∴点A的对应点A′的坐标是:(-2,1)或(2,-1).
    故选D.
    【点睛】
    此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.
    4、C
    【解析】
    ∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
    【详解】
    ∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
    ∴∠1=108°-90°=18°.故选C
    【点睛】
    本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
    5、B
    【解析】
    解:第一个图是轴对称图形,又是中心对称图形;
    第二个图是轴对称图形,不是中心对称图形;
    第三个图是轴对称图形,又是中心对称图形;
    第四个图是轴对称图形,不是中心对称图形;
    既是轴对称图形,又是中心对称图形的有2个.故选B.
    6、B
    【解析】
    试题分析:(4+x+3+30+33)÷3=7,
    解得:x=3,
    根据众数的定义可得这组数据的众数是3.
    故选B.
    考点:3.众数;3.算术平均数.
    7、C
    【解析】
    延长BC 到E 使BE=AD,利用中点的性质得到CM= DE=AB,再利用勾股定理进行计算即可解答.
    【详解】
    解:延长BC 到E 使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,
    ∵BC=3,AD=1,
    ∴C是BE的中点,
    ∵M是BD的中点,
    ∴CM= DE=AB,
    ∵AC⊥BC,
    ∴AB==,
    ∴CM= ,
    故选:C.

    【点睛】
    此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.
    8、D
    【解析】
    解:作直径AD,连结BD,如图.∵AD为直径,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故选D.

    点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.
    9、B
    【解析】
    【分析】根据同一时刻物高与影长成正比可得出结论.
    【详解】设竹竿的长度为x尺,
    ∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
    ∴,
    解得x=45(尺),
    故选B.
    【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.
    10、D
    【解析】
    分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.
    详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;
    根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;
    根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;
    根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.
    故选D.
    点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1或2
    【解析】
    先根据非负数的性质列式求出x、y的值,再分x的值是腰长与底边两种情况讨论求解.
    【详解】
    根据题意得,x-5=0,y-7=0,
    解得x=5,y=7,
    ①5是腰长时,三角形的三边分别为5、5、7,三角形的周长为1.
    ②5是底边时,三角形的三边分别为5、7、7,
    能组成三角形,5+7+7=2;
    所以,三角形的周长为:1或2;
    故答案为1或2.
    【点睛】
    本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.
    12、
    【解析】
    根据三角形的面积公式求出=,根据等腰三角形的性质得到BD=DC=BC,根据勾股定理列式计算即可.
    【详解】
    ∵AD是BC边上的高,CE是AB边上的高,
    ∴AB•CE=BC•AD,
    ∵AD=6,CE=8,
    ∴=,
    ∴=,
    ∵AB=AC,AD⊥BC,
    ∴BD=DC=BC,
    ∵AB2−BD2=AD2,
    ∴AB2=BC2+36,即BC2=BC2+36,
    解得:BC=.
    故答案为:.
    【点睛】
    本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关
    13、:k<1.
    【解析】
    ∵一元二次方程有两个不相等的实数根,
    ∴△==4﹣4k>0,
    解得:k<1,
    则k的取值范围是:k<1.
    故答案为k<1.
    14、1.
    【解析】
    设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.
    【详解】
    解:设小矩形的长为x,宽为y,则可列出方程组,
    ,解得,
    则小矩形的面积为6×10=1.
    【点睛】
    本题考查了二元一次方程组的应用.
    15、±2
    【解析】
    分析:先化简,再分同正或同负两种情况作答.
    详解:因为xy=3,所以x、y同号,
    于是原式==,
    当x>0,y>0时,原式==2;
    当x<0,y<0时,原式==−2
    故原式=±2.
    点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.
    16、ab(2a+1)(2a-1)
    【解析】
    先提取公因式再用公式法进行因式分解即可.
    【详解】
    4a3b- ab= ab(4a2-1)=ab(2a+1)(2a-1)
    【点睛】
    此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.

    三、解答题(共8题,共72分)
    17、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.
    【解析】
    试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
    (2)求出OH、PH的值即可判断;
    试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
    ∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.
    (2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.

    18、(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
    【解析】
    (1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.
    (2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.
    (3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.
    【详解】
    (1)根据题意得:
    y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,
    自变量x的取值范围是:0<x≤10且x为正整数;
    (2)当y=2520时,得﹣10x2+130x+2300=2520,
    解得x1=2,x2=11(不合题意,舍去)
    当x=2时,30+x=32(元)
    答:每件玩具的售价定为32元时,月销售利润恰为2520元.
    (3)根据题意得:
    y=﹣10x2+130x+2300
    =﹣10(x﹣6.5)2+2722.5,
    ∵a=﹣10<0,
    ∴当x=6.5时,y有最大值为2722.5,
    ∵0<x≤10且x为正整数,
    ∴当x=6时,30+x=36,y=2720(元),
    当x=7时,30+x=37,y=2720(元),
    答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
    【点睛】
    本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.
    19、(1)k=2;(2)点D经过的路径长为.
    【解析】
    (1)根据题意求得点B的坐标,再代入求得k值即可;
    (2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.
    【详解】
    (1)∵△AOB和△COD为全等三的等腰直角三角形,OC=,
    ∴AB=OA=OC=OD=,
    ∴点B坐标为(,),
    代入得k=2;
    (2)设平移后与反比例函数图象的交点为D′,
    由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,

    ∵OC=OD=,∠AOB=∠COM=45°,
    ∴OM=MC=MD=1,
    ∴D坐标为(﹣1,1),
    设D′横坐标为t,则OE=MF=t,
    ∴D′F=DF=t+1,
    ∴D′E=D′F+EF=t+2,
    ∴D′(t,t+2),
    ∵D′在反比例函数图象上,
    ∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),
    ∴D′(﹣1, +1),
    ∴DD′=,
    即点D经过的路径长为.
    【点睛】
    本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.
    20、(1)袋子中白球有2个;(2)见解析, .
    【解析】
    (1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
    【详解】
    解:(1)设袋子中白球有x个,
    根据题意得:,
    解得:x=2,
    经检验,x=2是原分式方程的解,
    ∴袋子中白球有2个;
    (2)画树状图得:

    ∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
    ∴两次都摸到相同颜色的小球的概率为:.
    【点睛】
    此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.
    21、(1);(2)图象见解析,或;(3)
    【解析】
    (1)将抛物线的解析式配成顶点式,即可得出顶点坐标;
    (2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;
    (3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求.
    【详解】
    解:(1),
    抛物线的顶点的坐标为.
    故答案为:
    (2)将代入抛物线的解析式得:
    解得:,
    抛物线的解析式为.
    抛物线的大致图象如图所示:

    将代入得:

    解得:或
    抛物线与反比例函数图象的交点坐标为或.
    将代入得:,

    将代入得:,

    综上所述,反比例函数的表达式为或.
    (3)设点的坐标为,
    则点的坐标为,
    的坐标为.

    的长随的增大而减小.
    矩形在其对称轴的左侧,抛物线的对称轴为,


    当时,的长有最小值,的最小值.
    的长度不变,
    当最小时,有最小值.
    的最小值
    故答案为:.
    【点睛】
    本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.
    22、(1)抛物线解析式为,顶点为;(2),1<<1;(3)①四边形是菱形;②不存在,理由见解析
    【解析】
    (1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.
    (2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式.
    (3)①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.
    ②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.
    【详解】
    (1)由抛物线的对称轴是,可设解析式为.
    把A、B两点坐标代入上式,得
    解之,得
    故抛物线解析式为,顶点为
    (2)∵点在抛物线上,位于第四象限,且坐标适合

    ∴y<0,即-y>0,-y表示点E到OA的距离.
    ∵OA是的对角线,
    ∴.
    因为抛物线与轴的两个交点是(1,0)的(1,0),所以,自变量的
    取值范围是1<<1.
    (3)①根据题意,当S = 24时,即.
    化简,得解之,得
    故所求的点E有两个,分别为E1(3,-4),E2(4,-4).
    点E1(3,-4)满足OE = AE,所以是菱形;
    点E2(4,-4)不满足OE = AE,所以不是菱形.
    ②当OA⊥EF,且OA = EF时,是正方形,
    此时点E的坐标只能是(3,-3).
    而坐标为(3,-3)的点不在抛物线上,
    故不存在这样的点E,使为正方形.
    23、(1),y=﹣x+5;(2)0<x<1或x>4;(3)P的坐标为(,0),见解析.
    【解析】
    (1)把A(1,4)代入y=,求出m=4,把B(4,n)代入y=,求出n=1,然后把把A(1,4)、(4,1)代入y=kx+b,即可求出一次函数解析式;
    (2)根据图像解答即可;
    (3)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,然后用待定系数法求出直线AB′的解析式即可.
    【详解】
    解:(1)把A(1,4)代入y=,得:m=4,
    ∴反比例函数的解析式为y=;
    把B(4,n)代入y=,得:n=1,
    ∴B(4,1),
    把A(1,4)、(4,1)代入y=kx+b,
    得:,
    解得:,
    ∴一次函数的解析式为y=﹣x+5;
    (2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=的下方;
    ∴当x>0时,kx+b<的解集为0<x<1或x>4;
    (3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,
    ∵B(4,1),
    ∴B′(4,﹣1),
    设直线AB′的解析式为y=px+q,
    ∴,
    解得,
    ∴直线AB′的解析式为,
    令y=0,得,
    解得x=,
    ∴点P的坐标为(,0).

    【点睛】
    本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.
    24、 (1) △ABC为直角三角形,证明见解析;(2)12π;(3).
    【解析】
    (1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30°,则∠ABE=60°故AB=BE=,则可求出求⊙A的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FK∥BD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tan∠C= 再求出cos∠C即可.
    【详解】
    解:∵,
    ∴,
    ∴△CEF∽△CBE,
    ∴∠CBE=∠CEF,
    ∵AE=AD,
    ∴∠ADE=∠AED=∠FEC=∠CBE,
    ∵BD为直径,
    ∴∠ADE+∠ABE=90°,
    ∴∠CBE+∠ABE=90°,
    ∴∠DBC=90°△ABC为直角三角形.
    (2)∵BE=CE
    ∴设∠EBC=∠ECB=x,
    ∴∠BDE=∠EBC=x,
    ∵AE=AD
    ∴∠AED=∠ADE=x,
    ∴∠CEF=∠AED=x
    ∴∠BFE=2x
    在△BDF中由△内角和可知:
    3x=90°
    ∴x=30°
    ∴∠ABE=60°
    ∴AB=BE=

    (3)由(1)知:∠D=∠CFE=∠CBE,
    ∴tan∠CBE=,
    设EF=a,BE=2a,
    ∴BF=,BD=2BF=,
    ∴AD=AB=,
    ∴,DE=2BE=4a,过F作FK∥BD交CE于K,
    ∴,  
    ∵, 

    ∴,
    ∴tan∠C=
    ∴cos∠C=.

    【点睛】
    此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.

    相关试卷

    2023年安徽省六安市金寨县东片七校联考数学中考模拟试卷(二)(含解析): 这是一份2023年安徽省六安市金寨县东片七校联考数学中考模拟试卷(二)(含解析),共20页。

    安徽省六安市七校联考2022年中考数学最后一模试卷含解析: 这是一份安徽省六安市七校联考2022年中考数学最后一模试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列运算正确的是,如图,过点A等内容,欢迎下载使用。

    安徽省六安市重点中学2022年十校联考最后数学试题含解析: 这是一份安徽省六安市重点中学2022年十校联考最后数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列函数是二次函数的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map