终身会员
搜索
    上传资料 赚现金

    山东省聊城市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类

    立即下载
    加入资料篮
    山东省聊城市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类第1页
    山东省聊城市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类第2页
    山东省聊城市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类第3页
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省聊城市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类

    展开

    这是一份山东省聊城市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类,共40页。试卷主要包含了先化简,再求值,解不等式组并写出它的所有整数解,,连接AC,BC等内容,欢迎下载使用。


    山东省聊城市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类
    一.分式的化简求值
    1.(2021•聊城)先化简,再求值:,其中a=﹣.
    二.分式方程的应用
    2.(2022•聊城)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.
    (1)求实际施工时,每天改造管网的长度;
    (2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?
    三.一元一次不等式组的整数解
    3.(2020•聊城)解不等式组并写出它的所有整数解.
    四.一次函数的应用
    4.(2021•聊城)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.
    (1)A,B两种花卉每盆各多少元?
    (2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?
    5.(2020•聊城)今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.
    (1)求这一批树苗平均每棵的价格是多少元?
    (2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.
    五.反比例函数系数k的几何意义
    6.(2021•聊城)如图,过C点的直线y=﹣x﹣2与x轴,y轴分别交于点A,B两点,且BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=(x>0)的图象于点D,连接OD,△ODH的面积为6.
    (1)求k值和点D的坐标;
    (2)如图,连接BD,OC,点E在直线y=﹣x﹣2上,且位于第二象限内,若△BDE的面积是△OCD面积的2倍,求点E的坐标.

    六.反比例函数与一次函数的交点问题
    7.(2022•聊城)如图,直线y=px+3(p≠0)与反比例函数y=(k>0)在第一象限内的图象交于点A(2,q),与y轴交于点B,过双曲线上的一点C作x轴的垂线,垂足为点D,交直线y=px+3于点E,且S△AOB:S△COD=3:4.
    (1)求k,p的值;
    (2)若OE将四边形BOCE分成两个面积相等的三角形,求点C的坐标.

    8.(2020•聊城)如图,已知反比例函数y=的图象与直线y=ax+b相交于点A(﹣2,3),B(1,m).
    (1)求出直线y=ax+b的表达式;
    (2)在x轴上有一点P使得△PAB的面积为18,求出点P的坐标.

    七.二次函数综合题(共3小题)
    9.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.
    (1)求二次函数的表达式;
    (2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;
    (3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.


    10.(2021•聊城)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.
    (1)求抛物线的表达式和AC所在直线的表达式;
    (2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上?若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;
    (3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求的值最大时点P的坐标.

    11.(2020•聊城)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
    (1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
    (2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
    (3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.

    八.平行四边形的判定与性质
    12.(2021•聊城)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.
    (1)求证:四边形AECD是平行四边形;
    (2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.

    九.菱形的判定
    13.(2022•聊城)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.
    (1)求证:AD=CF;
    (2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.

    一十.矩形的判定
    14.(2020•聊城)如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.

    一十一.切线的判定与性质
    15.(2022•聊城)如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.
    (1)连接AF,求证:AF是⊙O的切线;
    (2)若FC=10,AC=6,求FD的长.

    16.(2020•聊城)如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.
    (1)试证明DE是⊙O的切线;
    (2)若⊙O的半径为5,AC=6,求此时DE的长.

    一十二.相似三角形的判定与性质
    17.(2021•聊城)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC于点H,点D在上,连接AD,CD过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.
    (1)求证:EF是⊙O的切线;
    (2)若BC=2,AH=CG=3,求EF和CD的长.

    一十三.特殊角的三角函数值
    18.(2022•聊城)先化简,再求值:÷(a﹣)﹣,其中a=2sin45°+()﹣1.
    一十四.解直角三角形的应用-仰角俯角问题
    19.(2022•聊城)我市某辖区内的兴国寺有一座宋代仿木楼阁式空心砖塔,塔旁有一棵唐代古槐,称为“宋塔唐槐”(如图①).数学兴趣小组利用无人机测量古槐的高度,如图②所示,当无人机从位于塔基B点与古槐底D点之间的地面H点,竖直起飞到正上方45米E点处时,测得塔AB的顶端A和古槐CD的顶端C的俯角分别为26.6°和76°(点B,H,D三点在同一直线上).已知塔高为39米,塔基B与树底D的水平距离为20米,求古槐的高度(结果精确到1米).
    (参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

    20.(2020•聊城)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43).

    一十五.解直角三角形的应用-方向角问题
    21.(2021•聊城)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A处向正南方向走300米到达革命纪念碑B处,再从B处向正东方向走到党史纪念馆C处,然后从C处向北偏西37°方向走200米到达人民英雄雕塑D处,最后从D处回到A处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

    一十六.条形统计图
    22.(2021•聊城)为扎实推进“五育并举”工作,某校利用课外活动时间,开设了书法、健美操、乒乓球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成条形统计图和扇形统计图:

    请根据以上的信息,回答下列问题:
    (1)抽取的学生有    人,n=   ,a=   ;
    (2)补全条形统计图;
    (3)若该校有学生3200人,估计参加书法社团活动的学生人数.
    23.(2020•聊城)为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.

    根据以上信息,回答下列问题:
    (1)本次调查的样本容量为    ;统计图中的a=   ,b=   ;
    (2)通过计算补全条形统计图;
    (3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.
    一十七.折线统计图
    24.(2022•聊城)为庆祝中国共产主义青年团成立100周年,学校团委在八、九年级各抽取50名团员开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示:

    (1)你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明;
    (2)请根据图表中的信息,回答下列问题.

    众数
    中位数
    方差
    八年级竞赛成绩
    7
    8
    1.88
    九年级竞赛成绩
    a
    8
    b
    ①表中的a=   ,b=   ;
    ②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?
    (3)若规定成绩10分获一等奖,9分获二等奖,8分获三等奖,则哪个年级的获奖率高?


    参考答案与试题解析
    一.分式的化简求值
    1.(2021•聊城)先化简,再求值:,其中a=﹣.
    【解答】解:原式=+÷
    =+÷
    =+•
    =﹣
    =,
    当a=﹣时,原式==6.
    二.分式方程的应用
    2.(2022•聊城)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.
    (1)求实际施工时,每天改造管网的长度;
    (2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?
    【解答】解:(1)设原计划每天改造管网x米,则实际施工时每天改造管网(1+20%)x米,
    由题意得:﹣=10,
    解得:x=60,
    经检验,x=60是原方程的解,且符合题意.
    此时,60×(1+20%)=72(米).
    答:实际施工时,每天改造管网的长度是72米;

    (2)设以后每天改造管网还要增加m米,
    由题意得:(40﹣20)(72+m)≥3600﹣72×20,
    解得:m≥36.
    答:以后每天改造管网至少还要增加36米.
    三.一元一次不等式组的整数解
    3.(2020•聊城)解不等式组并写出它的所有整数解.
    【解答】解:,
    解不等式①,x<3,
    解不等式②,得x≥﹣,
    ∴原不等式组的解集为﹣≤x<3,
    它的所有整数解为0,1,2.
    四.一次函数的应用
    4.(2021•聊城)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.
    (1)A,B两种花卉每盆各多少元?
    (2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?
    【解答】解:(1)设A种花卉每盆x元,B种花卉每盆(x+0.5)元,
    根据题意,得:=,
    解这个方程,得:x=1,
    经检验,x=1是原方程的解,并符合题意,
    此时,x+0.5=1+0.5=1.5(元),
    ∴A种花卉每盆1元,B种花卉每盆1.5元;
    (2)设购买A种花卉t盆,购买这批花卉的总费用为w元,
    由题意,得:w=t+1.5(6000﹣t)=﹣0.5t+9000,
    ∵t≤(6000﹣t),
    解得:t≤1500,
    ∵w是t的一次函数,﹣0.5<0,
    ∴w随t的增大而减小,
    ∴当t=1500时,w最小,
    wmin=﹣0.5×1500+9000=8250(元),
    ∴购买A种花卉1500盆时购买这批花卉总费用最低,最低费用是8250元.
    5.(2020•聊城)今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.
    (1)求这一批树苗平均每棵的价格是多少元?
    (2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.
    【解答】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列方程,得:

    解这个方程,得x=20,
    经检验,x=20是原分式方程的解,并符合题意,
    答:这一批树苗平均每棵的价格是20元;

    (2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),
    设购进A种树苗t棵,这批树苗的费用为w元,则:
    w=18t+24(5500﹣t)=﹣6t+132000,
    ∵w是t的一次函数,k=﹣6<0,
    ∴w随t的增大而减小,
    又∵t≤3500,
    ∴当t=3500棵时,w最小,
    此时,B种树苗有:5500﹣3500=2000(棵),w=﹣6×3500+132000=111000,
    答:购进A种树苗3500棵,B种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.
    五.反比例函数系数k的几何意义
    6.(2021•聊城)如图,过C点的直线y=﹣x﹣2与x轴,y轴分别交于点A,B两点,且BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=(x>0)的图象于点D,连接OD,△ODH的面积为6.
    (1)求k值和点D的坐标;
    (2)如图,连接BD,OC,点E在直线y=﹣x﹣2上,且位于第二象限内,若△BDE的面积是△OCD面积的2倍,求点E的坐标.

    【解答】解:(1)设点D坐标为(m,n),由题意得OH•DH=mn=6,
    ∴mn=12,
    ∵点D在y=的图象上,
    ∴k=mn=12,
    ∵直线y=﹣x﹣2的图象与x轴交于点A,
    ∴点A的坐标为(﹣4,0),
    ∵CD⊥x轴,
    ∴CH∥y轴,
    ∴,
    ∴OH=AO=4,
    ∴点D的横坐标为4.
    ∵点D在反比例函数y=的图象上
    ∴点D坐标为(4,3);
    (2)由(1)知CD∥y轴,
    ∴S△BCD=S△OCD,
    ∵S△BDE=2S△OCD,
    ∴S△EDC=3S△BCD,
    过点E作EF⊥CD,垂足为点F,交y轴于点M,
    ∵S△EDC=CD•EF,S△BCD=CD•OH,
    ∴CD•EF=3×CD•OH,
    ∴EF=3OH=12.
    ∴EM=8,
    ∴点E的横坐标为﹣8
    ∵点E在直线y=﹣x﹣2上,
    ∴点E的坐标为(﹣8,2).

    六.反比例函数与一次函数的交点问题
    7.(2022•聊城)如图,直线y=px+3(p≠0)与反比例函数y=(k>0)在第一象限内的图象交于点A(2,q),与y轴交于点B,过双曲线上的一点C作x轴的垂线,垂足为点D,交直线y=px+3于点E,且S△AOB:S△COD=3:4.
    (1)求k,p的值;
    (2)若OE将四边形BOCE分成两个面积相等的三角形,求点C的坐标.

    【解答】解:(1)∵直线y=px+3与y轴交点为B,
    ∴B(0,3),
    即OB=3,
    ∵点A的横坐标为2,
    ∴S△AOB==3,
    ∵S△AOB:S△COD=3:4,
    ∴S△COD=4,
    设C(m,),
    ∴m•=4,
    解得k=8,
    ∵点A(2,q)在双曲线y=上,
    ∴q=4,
    把点A(2,4)代入y=px+3,
    得p=,
    ∴k=8,p=;
    (2)∵C(m,),
    ∴E(m,m+3),
    ∵OE将四边形BOCE分成两个面积相等的三角形,
    ∴S△BOE=S△COE,
    ∵S△BOE=,S△COE=()﹣4,
    ∴=()﹣4,
    解得m=4或m=﹣4(不符合题意,舍去),
    ∴点C的坐标为(4,2).
    8.(2020•聊城)如图,已知反比例函数y=的图象与直线y=ax+b相交于点A(﹣2,3),B(1,m).
    (1)求出直线y=ax+b的表达式;
    (2)在x轴上有一点P使得△PAB的面积为18,求出点P的坐标.

    【解答】解:(1)将点A的坐标代入反比例函数表达式并解得:k=﹣2×3=﹣6,
    故反比例函数表达式为:y=﹣,
    将点B的坐标代入上式并解得:m=﹣6,故点B(1,﹣6),
    将点A、B的坐标代入一次函数表达式得,解得,
    故直线的表达式为:y=﹣3x﹣3;

    (2)连接AP、BP,
    设直线与x轴的交点为E,当y=0时,x=﹣1,故点E(﹣1,0),
    分别过点A、B作x轴的垂线AC、BD,垂足分别为C、D,

    则S△PAB=PE•CA+PE•BD=PEPE=PE=18,解得:PE=4,
    故点P的坐标为(3,0)或(﹣5,0).
    七.二次函数综合题(共3小题)
    9.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.
    (1)求二次函数的表达式;
    (2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;
    (3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.


    【解答】(1)解:由题意得,

    ∴,
    ∴二次函数的表达式为:y=﹣x2﹣2x+3;
    (2)证明:∵当x=﹣1时,y=﹣1﹣2×(﹣1)+3=4,
    ∴D(﹣1,4),
    由﹣x2﹣2x+3=0得,
    x1=﹣3,x2=1,
    ∴A(﹣3,0),
    ∴AD2=25,
    ∵C(0,3),
    ∴CD2=2,AC2=18,
    ∴AC2+CD2=AD2,
    ∴∠ACD=90°,
    ∴tan∠DAC===,
    ∵∠BOC=90°,
    ∴tan∠BCO==,
    ∴∠DAC=∠BCO;
    (3)解:如图,

    作DE⊥y轴于E,作D1F⊥y轴于F,
    ∴DE∥FD1,
    ∴△DEC∽△D1EF,
    ∴=,
    ∴FD1=2DE=2,CF=CE=2,
    ∴D1(2,1),
    ∴y1的关系式为:y=﹣(x﹣2)2+1,
    由﹣(x﹣2)2+1=0得,
    x=3或x=1,
    ∴M(3,0),
    当x=0时,y=﹣3,
    ∴N(0,﹣3),
    设P(2,m),
    当▱MNQP时,
    ∴MN∥PQ,PQ=MN,
    ∴Q点的横坐标为﹣1,
    当x=﹣1时,y=﹣(﹣1﹣2)2+1=﹣8,
    ∴Q(﹣1,8),
    当▱MNPQ时,
    同理可得:点Q横坐标为:5,
    当x=5时,y=﹣(5﹣2)2+1=﹣8,
    ∴Q′(5,﹣8),
    综上所述:点Q(﹣1,﹣8)或(5,﹣8).
    10.(2021•聊城)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.
    (1)求抛物线的表达式和AC所在直线的表达式;
    (2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上?若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;
    (3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求的值最大时点P的坐标.

    【解答】解:(1)∵抛物线y=ax2+x+c过点A(1,0),C(0,﹣2),
    ∴,解得:.
    ∴抛物线的表达式为y=.
    设直线AC的表达式为y=kx+b,则
    ,解得:.
    ∴直线AC的表达式为y=2x﹣2.
    (2)点D不在抛物线的对称轴上,理由是:
    ∵抛物线的表达式为y=,
    ∴点B坐标为(﹣4,0).
    ∵OA=1,OC=2,
    ∴.
    又∵∠AOC=∠COB=90°,
    ∴△AOC∽△COB.
    ∴∠ACO=∠CBO.
    ∴∠ACO+∠BCO=∠OBC+∠BCO=90°,
    ∴AC⊥BC.
    ∴将△ABC沿BC所在直线折叠,点D一定落在直线AC上,
    延长AC至D,使DC=AC,过点D作DE⊥y轴交y轴于点E,如图1.
    又∵∠ACO=∠DCE,
    ∴△ACO≌△DCE(AAS).
    ∴DE=AO=1,则点D横坐标为﹣1,
    ∵抛物线的对称轴为直线x=﹣.
    故点D不在抛物线的对称轴上.
    (3)设过点B、C的直线表达式为y=px+q,
    ∵C(0,﹣2),B(﹣4,0),
    ∴,解得:.
    ∴过点B、C的直线解析式为y=.
    过点A作x轴的垂线交BC的延长线于点M,点M坐标为(1,﹣),
    过点P作x轴的垂线交BC于点N,垂足为H,如图2.
    设点P坐标为(m,),则点N坐标为(m,),
    ∴PN=﹣()=,
    ∵PN∥AM,
    ∴△AQM∽△PQN.
    ∴.
    若分别以PQ、AQ为底计算△BPQ和△BAQ的面积(同高不等底),
    则△BPQ与△BAQ的面积比为,即.
    ∴===.
    ∵﹣<0,
    ∴当m=﹣2时,的最大值为,此时点P坐标为(﹣2,﹣3).


    11.(2020•聊城)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
    (1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
    (2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
    (3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.

    【解答】解:(1)将点A(﹣1,0),B(4,0),代入y=ax2+bx+4,
    得:,
    解得:,
    ∴二次函数的表达式为:y=﹣x2+3x+4,
    当x=0时,y=4,
    ∴C(0,4),
    设BC所在直线的表达式为:y=mx+n,
    将C(0,4)、B(4,0)代入y=mx+n,
    得:,
    解得:,
    ∴BC所在直线的表达式为:y=﹣x+4;
    (2)∵DE⊥x轴,PF⊥x轴,
    ∴DE∥PF,
    只要DE=PF,四边形DEFP即为平行四边形,
    ∵y=﹣x2+3x+4=﹣(x﹣)2+,
    ∴点D的坐标为:(,),
    将x=代入y=﹣x+4,即y=﹣+4=,
    ∴点E的坐标为:(,),
    ∴DE=﹣=,
    设点P的横坐标为t,
    则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),
    ∴PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,
    由DE=PF得:﹣t2+4t=,
    解得:t1=(不合题意舍去),t2=,
    当t=时,﹣t2+3t+4=﹣()2+3×+4=,
    ∴点P的坐标为(,);
    (3)存在,理由如下:
    如图2所示:
    由(2)得:PF∥DE,
    ∴∠CED=∠CFP,
    又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,
    ∴∠PCF≠∠DCE,
    ∴只有∠PCF=∠CDE时,△PCF∽△CDE,
    ∴=,
    ∵C(0,4)、E(,),
    ∴CE==,
    由(2)得:DE=,PF=﹣t2+4t,F的坐标为:(t,﹣t+4),
    ∴CF==t,
    ∴=,
    ∵t≠0,
    ∴(﹣t+4)=3,
    解得:t=,
    当t=时,﹣t2+3t+4=﹣()2+3×+4=,
    ∴点P的坐标为:(,).

    八.平行四边形的判定与性质
    12.(2021•聊城)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.
    (1)求证:四边形AECD是平行四边形;
    (2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.

    【解答】(1)证明:在△AOE和△COD中,

    ∴△AOE≌△COD(ASA),
    ∴OD=OE,
    又∵AO=CO,
    ∴四边形AECD是平行四边形;
    (2)解:∵AB=BC,AO=CO,
    ∴OB⊥AC,
    ∴平行四边形AECD是菱形,
    ∵AC=8,
    ∴CO=AC=4,
    在Rt△COD中,由勾股定理得:OD===3,
    ∴DE=2OD=6,
    ∴菱形AECD的面积=AC×DE=×8×6=24.
    九.菱形的判定
    13.(2022•聊城)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.
    (1)求证:AD=CF;
    (2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.

    【解答】(1)证明:∵CF∥AB,
    ∴∠ADF=∠CFD,∠DAC=∠FCA,
    ∵点E是AC的中点,
    ∴AE=CE,
    ∴△ADE≌△CFE(AAS),
    ∴AD=CF;
    (2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:
    由(1)知,AD=CF,
    ∵AD∥CF,
    ∴四边形ADCF是平行四边形,
    ∵AC⊥BC,
    ∴△ABC是直角三角形,
    ∵点D是AB的中点,
    ∴CD=AB=AD,
    ∴四边形ADCF是菱形.
    一十.矩形的判定
    14.(2020•聊城)如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.

    【解答】证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠BAE=∠CFE,∠ABE=∠FCE,
    ∵E为BC的中点,
    ∴EB=EC,
    ∴△ABE≌△FCE(AAS),
    ∴AB=CF.
    ∵AB∥CF,
    ∴四边形ABFC是平行四边形,
    ∵AD=BC,AD=AF,
    ∴BC=AF,
    ∴四边形ABFC是矩形.
    一十一.切线的判定与性质
    15.(2022•聊城)如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.
    (1)连接AF,求证:AF是⊙O的切线;
    (2)若FC=10,AC=6,求FD的长.

    【解答】(1)证明:在△AOF和△EOF中,

    ∴△AOF≌△EOF(SAS),
    ∴∠OAF=∠OEF,
    ∵BC与⊙O相切,
    ∴OE⊥FC,
    ∴∠OAF=∠OEF=90°,
    即OA⊥AF,
    ∵OA是⊙O的半径,
    ∴AF是⊙O的切线;
    (2)解:在Rt△CAF中,∠CAF=90°,FC=10,AC=6,
    ∴AF==8,
    ∵∠OCE=∠FCA=90°,
    ∴△OEC∽△FAC,
    ∴,
    设⊙O的半径为r,则,
    解得r=,
    在Rt△FAO中,∠FAO=90°,AF=8,AO=,
    ∴OF==,
    ∴FD=OF﹣OD=﹣,
    即FD的长为﹣.
    16.(2020•聊城)如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.
    (1)试证明DE是⊙O的切线;
    (2)若⊙O的半径为5,AC=6,求此时DE的长.

    【解答】(1)证明:连接OD、BD,
    ∵AB是⊙O直径,
    ∴∠ADB=90°,
    ∴BD⊥AC,
    ∵AB=BC,
    ∴D为AC中点,
    ∵OA=OB,
    ∴OD∥BC,
    ∵DE⊥BC,
    ∴DE⊥OD,
    ∵OD为半径,
    ∴DE是⊙O的切线;
    (2)由(1)知BD是AC的中线,
    ∴AD=CD==3,
    ∵⊙O的半径为5,
    ∴AB=10,
    ∴BD===,
    ∵AB=BC,
    ∴∠A=∠C,
    ∵∠ADB=∠CED=90°,
    ∴△CDE∽△ABD,
    ∴,即=,
    ∴DE=3.

    一十二.相似三角形的判定与性质
    17.(2021•聊城)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC于点H,点D在上,连接AD,CD过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.
    (1)求证:EF是⊙O的切线;
    (2)若BC=2,AH=CG=3,求EF和CD的长.

    【解答】证明:(1)∵AB=AC,
    ∴=,
    ∵AE是直径,
    ∴=,
    ∴∠BAE=∠CAE,
    又∵AB=AC,
    ∴AE⊥BC,
    又∵EF∥BC,
    ∴EF⊥AE,
    ∴EF是⊙O的切线;
    (2)连接OC,设⊙O的半径为r,

    ∵AE⊥BC,
    ∴CH=BH=BC=1,
    ∴HG=HC+CG=4,
    ∴AG===5,
    在Rt△OHC中,OH2+CH2=OC2,
    ∴(3﹣r)2+1=r2,
    解得:r=,
    ∴AE=,
    ∵EF∥BC,
    ∴△AEF∽△AHG,
    ∴,
    ∴=,
    ∴EF=,
    ∵AH=3,BH=1,
    ∴AB===,
    ∵四边形ABCD内接于⊙O,
    ∴∠B+∠ADC=180°,
    ∵∠ADC+∠CDG=180°,
    ∴∠B=∠CDG,
    又∵∠DGC=∠AGB,
    ∴△DCG∽△BAG,
    ∴,
    ∴=,
    ∴CD=.
    一十三.特殊角的三角函数值
    18.(2022•聊城)先化简,再求值:÷(a﹣)﹣,其中a=2sin45°+()﹣1.
    【解答】解:÷(a﹣)﹣
    =×﹣
    =﹣
    =,
    ∵a=2sin45°+()﹣1
    =2×+2
    =,
    代入得:原式==;
    故答案为:;.
    一十四.解直角三角形的应用-仰角俯角问题
    19.(2022•聊城)我市某辖区内的兴国寺有一座宋代仿木楼阁式空心砖塔,塔旁有一棵唐代古槐,称为“宋塔唐槐”(如图①).数学兴趣小组利用无人机测量古槐的高度,如图②所示,当无人机从位于塔基B点与古槐底D点之间的地面H点,竖直起飞到正上方45米E点处时,测得塔AB的顶端A和古槐CD的顶端C的俯角分别为26.6°和76°(点B,H,D三点在同一直线上).已知塔高为39米,塔基B与树底D的水平距离为20米,求古槐的高度(结果精确到1米).
    (参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

    【解答】解:过点A作AM⊥EH于M,过点C作CN⊥EH于N,
    由题意知,AM=BH,CN=DH,AB=MH,
    在Rt△AME中,∠EAM=26.6°,
    ∴tan∠EAM=,
    ∴AM==≈=12米,
    ∴BH=AM=12米,
    ∵BD=20,
    ∴DH=BD﹣BH=8米,
    ∴CN=8米,
    在Rt△ENC中,∠ECN=76°,
    ∴tan∠ECN=,
    ∴EN=CN•tan∠ECN≈8×4.01=32.08米,
    ∴CD=NH=EH﹣EN=12.92≈13(米),
    即古槐的高度约为13米.

    20.(2020•聊城)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43).

    【解答】解:过点N作EF∥AC交AB于点E,交CD于点F,

    则AE=MN=CF=1.6m,
    EF=AC=35m,
    ∠BEN=∠DFN=90°,
    EN=AM,NF=MC,
    则DF=DC﹣CF=16.6﹣1.6=15(m),
    在Rt△DFN中,
    ∵∠DNF=45°,
    ∴NF=DF=15m,
    ∴EN=EF﹣NF=35﹣15=20(m),
    在Rt△BEN中,
    ∵tan∠BNE=,
    ∴BE=EN•tan∠BNE=20×tan55°≈20×1.43=28.6(m),
    ∴AB=BE+AE=28.6+1.6≈30(m).
    答:居民楼AB的高度约为30m.
    一十五.解直角三角形的应用-方向角问题
    21.(2021•聊城)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A处向正南方向走300米到达革命纪念碑B处,再从B处向正东方向走到党史纪念馆C处,然后从C处向北偏西37°方向走200米到达人民英雄雕塑D处,最后从D处回到A处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

    【解答】解:过D作DE⊥AB于E,DF⊥BC于F,如图所示:
    由题意得:∠CDF=37°,CD=200米,
    在Rt△CDF中,sin∠CDF==sin37°≈0.60,cos∠CDF==cos37°≈0.80,
    ∴CF≈200×0.60=120(米),DF≈200×0.80=160(米),
    ∵AB⊥BC,DF⊥BC,DE⊥AB,
    ∴∠B=∠DFB=∠DEB=90°,
    ∴四边形BFDE是矩形,
    ∴BF=DE,BE=DF=160米,
    ∴AE=AB﹣BE=300﹣160=140(米),
    在Rt△ADE中,tan∠DAE==tan65°≈2.14,
    ∴DE≈AE×2.14=140×2.14=299.60(米),
    ∴BF=DE≈299.60(米),
    ∴BC=BF+CF=299.60+120≈420(米),
    答:革命纪念碑与党史纪念馆之间的距离约为420米.

    一十六.条形统计图
    22.(2021•聊城)为扎实推进“五育并举”工作,某校利用课外活动时间,开设了书法、健美操、乒乓球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成条形统计图和扇形统计图:

    请根据以上的信息,回答下列问题:
    (1)抽取的学生有  200 人,n= 54 ,a= 25 ;
    (2)补全条形统计图;
    (3)若该校有学生3200人,估计参加书法社团活动的学生人数.
    【解答】解:(1)抽取的学生有80÷40%=200(人),
    360°×=54°,
    ∴n=54,
    ×100%=25%,
    ∴a=25,
    故答案为:200,54,25;
    (2)参加朗诵社团活动的学生人数为200﹣(50+30+80)=40(人),
    补全条形统计图如图:

    (3)估计参加书法社团活动的学生人数为3200×25%=800(人).
    答:估计参加书法社团活动的学生人数为800人.
    23.(2020•聊城)为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.

    根据以上信息,回答下列问题:
    (1)本次调查的样本容量为  120 ;统计图中的a= 12 ,b= 36 ;
    (2)通过计算补全条形统计图;
    (3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.
    【解答】解:(1)18÷15%=120(人),因此样本容量为120;
    a=120×10%=12(人),b=120×30%=36(人),
    故答案为:120,12,36;
    (2)E组频数:120﹣18﹣12﹣30﹣36=24(人),
    补全条形统计图如图所示:

    (3)2500×=625(人),
    答:估计该校2500名学生中喜爱“葫芦雕刻”的有625人.
    一十七.折线统计图
    24.(2022•聊城)为庆祝中国共产主义青年团成立100周年,学校团委在八、九年级各抽取50名团员开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示:

    (1)你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明;
    (2)请根据图表中的信息,回答下列问题.

    众数
    中位数
    方差
    八年级竞赛成绩
    7
    8
    1.88
    九年级竞赛成绩
    a
    8
    b
    ①表中的a= 8 ,b= 1.56 ;
    ②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?
    (3)若规定成绩10分获一等奖,9分获二等奖,8分获三等奖,则哪个年级的获奖率高?

    【解答】解:(1)由题意得:
    八年级成绩的平均数是:(6×7+7×15+8×10+9×7+10×11)÷50=8(分),
    九年级成绩的平均数是:(6×8+7×9+8×14+9×13+10×6)÷50=8(分),
    故用平均数无法判定哪个年级的成绩比较好;
    (2)①九年级竞赛成绩中8分出现的次数最多,故众数a=8分;
    九年级竞赛成绩的方差为:s2=×[8×(6﹣8)2+9×(7﹣8)2+14×(8﹣8)2+13×(9﹣8)2+6×(10﹣8)2]=1.56,
    故答案为:8;1.56;
    ②如果从众数角度看,八年级的众数为7分,九年级的众数为8分,所以应该给九年级颁奖;如果从方差角度看,八年级的方差为1.88,九年级的方差为1.56,又因为两个年级的平均数相同,九年级的成绩的波动小,所以应该给九年级颁奖;
    综上所述,应该给九年级颁奖.
    (3)八年级的获奖率为:(10+7+11)÷50=56%,
    九年级的获奖率为:(14+13+6)÷50=66%,
    ∵66%>56%,
    ∴九年级的获奖率高.

    相关试卷

    山东省潍坊市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类:

    这是一份山东省潍坊市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类,共46页。试卷主要包含了÷,其中x是16的算术平方根,,如图,与点C关于y轴对称,【情境再现】等内容,欢迎下载使用。

    山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类:

    这是一份山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类,共43页。试卷主要包含了先化简,再求值,÷,其中x=+1,y=﹣1,直播购物逐渐走进了人们的生活等内容,欢迎下载使用。

    山东省聊城市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类:

    这是一份山东省聊城市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类,共13页。试卷主要包含了﹣x+2=   ,÷=   ,计算,不等式组的解集是    等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map