|试卷下载
搜索
    上传资料 赚现金
    2022届浙江省东阳市中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    2022届浙江省东阳市中考数学模拟精编试卷含解析01
    2022届浙江省东阳市中考数学模拟精编试卷含解析02
    2022届浙江省东阳市中考数学模拟精编试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省东阳市中考数学模拟精编试卷含解析

    展开
    这是一份2022届浙江省东阳市中考数学模拟精编试卷含解析,共20页。试卷主要包含了如图,A(4,0),B等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为(  )
    A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
    2.已知一个多边形的内角和是1080°,则这个多边形是( )
    A.五边形 B.六边形 C.七边形 D.八边形
    3.下列各数:π,sin30°,﹣ ,其中无理数的个数是(  )
    A.1个 B.2个 C.3个 D.4个
    4.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为(  )

    A. B. C. D.
    5.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为(  )

    A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)
    6.已知函数,则使y=k成立的x值恰好有三个,则k的值为( )
    A.0 B.1 C.2 D.3
    7.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为( )

    A.30° B.40° C.50° D.60°
    8.如图,A(4,0),B(1,3),以OA、OB为边作□OACB,反比例函数(k≠0)的图象经过点C.则下列结论不正确的是(  )

    A.□OACB的面积为12
    B.若y<3,则x>5
    C.将□OACB向上平移12个单位长度,点B落在反比例函数的图象上.
    D.将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上.
    9.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是(  )

    A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)
    10.当 a>0 时,下列关于幂的运算正确的是( )
    A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a5
    二、填空题(共7小题,每小题3分,满分21分)
    11.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.
    12.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x米,若要求出未知数x,则应列出方程 (列出方程,不要求解方程).
    13.抛掷一枚均匀的硬币,前3次都正面朝上,第4次正面朝上的概率为________.
    14.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.

    15.如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应),若AB=1,反比例函数的图象恰好经过点A′,B,则的值为_________.

    16.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是  .
    17.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O相切于点D.已知∠CDE=20°,则的长为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
    (1)求证:无论实数m取何值,方程总有两个实数根;
    (2)若方程两个根均为正整数,求负整数m的值.
    19.(5分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.

    小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:
    x/cm
    0
    1
    2
    3
    4
    5
    6
    y1/cm
    0
    0.78
    1.76
    2.85
    3.98
    4.95
    4.47
    y2/cm
    4
    4.69
    5.26

    5.96
    5.94
    4.47
    (2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:
    ①连接BE,则BE的长约为   cm.
    ②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为   cm.
    20.(8分)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.
    求证:AD•CE=DE•DF;
    说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);
    (2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
    ①∠CDB=∠CEB;
    ②AD∥EC;
    ③∠DEC=∠ADF,且∠CDE=90°.

    21.(10分) “大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

    请根据图中提供的信息,解答下列问题:
    (1)求被调查的学生总人数;
    (2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
    22.(10分)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.
    (1)若∠DAB=50°,求∠ATC的度数;
    (2)若⊙O半径为2,TC=,求AD的长.

    23.(12分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.
    24.(14分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:
    甲:79,86,82,85,83.
    乙:88,81,85,81,80.
    请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可.
    【详解】
    ∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,
    ∴y1=﹣k2×(-3)=3k2,
    y2=﹣k2×(-1)=k2,
    ∵k≠0,
    ∴y1>y2.
    故答案选A.
    【点睛】
    本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.
    2、D
    【解析】
    根据多边形的内角和=(n﹣2)•180°,列方程可求解.
    【详解】
    设所求多边形边数为n,
    ∴(n﹣2)•180°=1080°,
    解得n=8.
    故选D.
    【点睛】
    本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
    3、B
    【解析】
    根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.
    【详解】
    sin30°=,=3,故无理数有π,-,
    故选:B.
    【点睛】
    本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
    4、A
    【解析】
    试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
    设BD=a,则OC=3a.
    ∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
    在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
    同理,可求出点D的坐标为(1﹣a,a).
    ∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.

    5、B
    【解析】
    连接AC,如图所示.
    ∵四边形OABC是菱形,
    ∴OA=AB=BC=OC.
    ∵∠ABC=60°,
    ∴△ABC是等边三角形.
    ∴AC=AB.
    ∴AC=OA.
    ∵OA=1,
    ∴AC=1.
    画出第5次、第6次、第7次翻转后的图形,如图所示.
    由图可知:每翻转6次,图形向右平移2.
    ∵3=336×6+1,
    ∴点B1向右平移1322(即336×2)到点B3.
    ∵B1的坐标为(1.5, ),
    ∴B3的坐标为(1.5+1322,),
    故选B.

    点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键.
    6、D
    【解析】
    解:如图:

    利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.
    故选:D.
    7、D
    【解析】
    如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.

    8、B
    【解析】
    先根据平行四边形的性质得到点的坐标,再代入反比例函数(k≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.
    【详解】
    解:A(4,0),B(1,3),,

    反比例函数(k≠0)的图象经过点,

    反比例函数解析式为.
    □OACB的面积为,正确;
    当时,,故错误;
    将□OACB向上平移12个单位长度,点的坐标变为,在反比例函数图象上,故正确;
    因为反比例函数的图象关于原点中心对称,故将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上,正确.
    故选:B.
    【点睛】
    本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.
    9、D
    【解析】
    首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.
    【详解】
    解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),
    则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),
    故选D.
    【点睛】
    此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.
    10、A
    【解析】
    直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.
    【详解】
    A选项:a0=1,正确;
    B选项:a﹣1= ,故此选项错误;
    C选项:(﹣a)2=a2,故此选项错误;
    D选项:(a2)3=a6,故此选项错误;
    故选A.
    【点睛】
    考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    根据已知他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡得:1张3D立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡,根据3张3D立体贺卡张普通贺卡张3D立体贺卡,可得结论.
    【详解】
    解:设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡.
    则1张普通贺卡为:元,
    由题意得:,

    答:剩下的钱恰好还能买1张普通贺卡.
    故答案为:1.
    【点睛】
    本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价单价数量列式计算.
    12、π(x+5)1=4πx1.
    【解析】
    根据等量关系“大圆的面积=4×小圆的面积”可以列出方程.
    【详解】
    解:设小圆的半径为x米,则大圆的半径为(x+5)米,
    根据题意得:π(x+5)1=4πx1,
    故答案为π(x+5)1=4πx1.
    【点睛】
    本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.
    13、
    【解析】
    根据概率的计算方法求解即可.
    【详解】
    ∵第4次抛掷一枚均匀的硬币时,正面和反面朝上的概率相等,
    ∴第4次正面朝上的概率为.
    故答案为:.
    【点睛】
    此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    14、3﹣1
    【解析】
    通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.
    【详解】
    如图,当Q在对角线BD上时,BQ最小.
    连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.
    ∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).

    故答案为3﹣1.
    【点睛】
    本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.
    15、
    【解析】
    解:∵四边形ABCO是矩形,AB=1,
    ∴设B(m,1),
    ∴OA=BC=m,
    ∵四边形OA′B′D与四边形OABD关于直线OD对称,
    ∴OA′=OA=m,∠A′OD=∠AOD=30°,
    ∴∠A′OA=60°,
    过A′作A′E⊥OA于E,
    ∴OE=m,A′E=m,
    ∴A′(m,m),
    ∵反比例函数y=(k≠0)的图象恰好经过点A′,B,
    ∴m•m=m,
    ∴m=,
    ∴k=.

    【点睛】
    本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.
    16、1.
    【解析】
    依据调和数的意义,有-=-,解得x=1.
    17、7π
    【解析】
    连接OD,由切线的性质和已知条件可求出∠AOD的度数,再根据弧长公式即可求出的长.
    【详解】
    连接OD,

    ∵直线DE与⊙O相切于点D,
    ∴∠EDO=90°,
    ∵∠CDE=20°,
    ∴∠ODB=180°-90°-20°=70°,
    ∵OD=OB,
    ∴∠ODB=∠OBD=70°,
    ∴∠AOD=140°,
    ∴的长==7π,
    故答案为:7π.
    【点睛】
    本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出∠AOD的度数是解题的关键.

    三、解答题(共7小题,满分69分)
    18、 (1)见解析;(2) m=-1.
    【解析】
    (1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
    (2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
    【详解】
    (1)∵△=(m+3)2﹣4(m+2)
    =(m+1)2
    ∴无论m取何值,(m+1)2恒大于等于1
    ∴原方程总有两个实数根
    (2)原方程可化为:(x-1)(x-m-2)=1
    ∴x1=1, x2=m+2
    ∵方程两个根均为正整数,且m为负整数
    ∴m=-1.
    【点睛】
    本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.
    19、(1)详见解析;(2)详见解析;(3)①6;②6或4.1.
    【解析】
    (1)由题意得出BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BD=,得出AD=AB+BD=4.9367(cm),再由勾股定理求出AC即可;
    (2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象即可;
    (3)①∵BC=6时,CD=AC=4.1,即点C与点E重合,CD与AC重合,BC为直径,得出BE=BC=6即可;
    ②分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6;
    当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6,由图象可得:BC=4.1.
    【详解】
    (1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如图1所示:
    ∵CD⊥AB,
    ∴(cm),
    ∴AD=AB+BD=4+0.9367=4.9367(cm),
    ∴(cm);
    补充完整如下表:

    (2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:
    (3)①∵BC=6cm时,CD=AC=4.1cm,即点C与点E重合,CD与AC重合,BC为直径,
    ∴BE=BC=6cm,
    故答案为:6;
    ②以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:
    当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6cm;
    当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6cm,由图象可得:BC=4.1cm;
    综上所述:BC的长度约为6cm或4.1cm;
    故答案为:6或4.1.

    【点睛】
    本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键.
    20、 (1)见解析;(2)见解析.
    【解析】
    连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线,若证AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一问中只能证得∠EDC=∠DAF=90°,所以在第二问中只要证得∠DEC=∠ADF即可解答此题.
    【详解】
    (1)连接AF,
    ∵DF是⊙O的直径,
    ∴∠DAF=90°,
    ∴∠F+∠ADF=90°,
    ∵∠F=∠ABD,∠ADG=∠ABD,
    ∴∠F=∠ADG,
    ∴∠ADF+∠ADG=90°
    ∴直线CD是⊙O的切线
    ∴∠EDC=90°,
    ∴∠EDC=∠DAF=90°;
    (2)选取①完成证明
    ∵直线CD是⊙O的切线,
    ∴∠CDB=∠A.
    ∵∠CDB=∠CEB,
    ∴∠A=∠CEB.
    ∴AD∥EC.
    ∴∠DEC=∠ADF.
    ∵∠EDC=∠DAF=90°,
    ∴△ADF∽△DEC.
    ∴AD:DE=DF:EC.
    ∴AD•CE=DE•DF.

    【点睛】
    此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.
    21、(1)40;(2)72;(3)1.
    【解析】
    (1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
    (2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)用800乘以样本中最想去A景点的人数所占的百分比即可.
    【详解】
    (1)被调查的学生总人数为8÷20%=40(人);
    (2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:

    扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
    (3)800×=1,所以估计“最想去景点B“的学生人数为1人.
    22、(2)65°;(2)2.
    【解析】
    试题分析:(2)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CT⊥OT,CT为⊙O的切线;
    (2)证明四边形OTCE为矩形,求得OE的长,在直角△OAE中,利用勾股定理即可求解.
    试题解析:(2)连接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT为⊙O的切线;
    (2)过O作OE⊥AD于E,则E为AD中点,又∵CT⊥AC,∴OE∥CT,∴四边形OTCE为矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.

    考点:2.切线的判定与性质;2.勾股定理;3.圆周角定理.
    23、(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.
    【解析】
    (1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;
    (2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.
    【详解】
    解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,
    ∴h=1,
    把原点坐标代入y=(x﹣1)2+k,得,
    (2﹣1)2+k=2,
    解得k=﹣1;
    (2)∵抛物线y=(x﹣1)2+k与x轴有公共点,
    ∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,
    ∴k≤2.
    当x=﹣1时,y=4+k;当x=2时,y=1+k,
    ∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,
    ∴4+k>2且1+k<2,解得﹣4<k<﹣1,
    综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.
    【点睛】
    抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.
    24、(1)83,81;(2),推荐甲去参加比赛.
    【解析】
    (1)根据中位数和众数分别求解可得;
    (2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.
    【详解】
    (1)甲成绩的中位数是83分,乙成绩的众数是81分,
    故答案为:83分、81分;
    (2),
    ∴.
    ∵,,
    ∴推荐甲去参加比赛.
    【点睛】
    此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.

    相关试卷

    2023届浙江省温州市各校中考数学模拟精编试卷含解析: 这是一份2023届浙江省温州市各校中考数学模拟精编试卷含解析,共16页。

    浙江省台州地区2022-2023学年中考数学模拟精编试卷含解析: 这是一份浙江省台州地区2022-2023学年中考数学模拟精编试卷含解析,共19页。

    2023届浙江省温州市各校中考数学模拟精编试卷含解析: 这是一份2023届浙江省温州市各校中考数学模拟精编试卷含解析,共16页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map