|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届玉林市重点中学中考四模数学试题含解析
    立即下载
    加入资料篮
    2022届玉林市重点中学中考四模数学试题含解析01
    2022届玉林市重点中学中考四模数学试题含解析02
    2022届玉林市重点中学中考四模数学试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届玉林市重点中学中考四模数学试题含解析

    展开
    这是一份2022届玉林市重点中学中考四模数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,|﹣3|的值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列美丽的壮锦图案是中心对称图形的是(  )
    A. B. C. D.
    2.在下面的四个几何体中,左视图与主视图不相同的几何体是(  )
    A. B. C. D.
    3.若分式有意义,则a的取值范围为( )
    A.a≠4 B.a>4 C.a<4 D.a=4
    4.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:
    ①图1中a的值为500;
    ②乙车的速度为35 m/s;
    ③图1中线段EF应表示为;
    ④图2中函数图象与x轴交点的横坐标为1.
    其中所有的正确结论是( )

    A.①④ B.②③
    C.①②④ D.①③④
    5.如图,由四个正方体组成的几何体的左视图是( )

    A. B. C. D.
    6.某几何体的左视图如图所示,则该几何体不可能是(  )

    A. B. C. D.
    7.|﹣3|的值是( )
    A.3 B. C.﹣3 D.﹣
    8.到三角形三个顶点的距离相等的点是三角形( )的交点.
    A.三个内角平分线 B.三边垂直平分线
    C.三条中线 D.三条高
    9.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为

    A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
    10.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为(  )

    A.(,0) B.(2,0) C.(,0) D.(3,0)
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.

    12.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.
    13.如图,的顶点落在两条平行线上,点D、E、F分别是三边中点,平行线间的距离是8,,移动点A,当时,EF的长度是______.

    14.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.

    15.如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.

    16.现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.
    (1)求证:四边形BEDF是平行四边形;
    (2)请添加一个条件使四边形BEDF为菱形.

    18.(8分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.

    (1)求证:AB是⊙O的切线;
    (2)若AC=8,tan∠BAC=,求⊙O的半径.
    19.(8分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
    (1)求证:△ADC∽△CDB;
    (2)若AC=2,AB=CD,求⊙O半径.

    20.(8分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.

    (1)求证:PD是⊙O的切线;
    (2)若AB=4,DA=DP,试求弧BD的长;
    (3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.
    21.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.
    (1)求证:;
    (2)若△OCP与△PDA的面积比为1:4,求边AB的长.

    22.(10分)已知如图,直线y=﹣ x+4 与x轴相交于点A,与直线y= x相交于点P.
    (1)求点P的坐标;
    (2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式
    (3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。

    23.(12分)已知抛物线y=ax2+ c(a≠0).
    (1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;
    (2)若a>0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);
    (3)若a>0,c <0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PB与y轴分别交于M、N两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
    24.如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).

    (1)求抛物线的表达式.
    (2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
    ①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
    ②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
    (3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    【分析】根据中心对称图形的定义逐项进行判断即可得.
    【详解】A、是中心对称图形,故此选项正确;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、不是中心对称图形,故此选项错误,
    故选A.
    【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    2、B
    【解析】
    由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.
    【详解】
    A、正方体的左视图与主视图都是正方形,故A选项不合题意;
    B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;
    C、球的左视图与主视图都是圆,故C选项不合题意;
    D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;
    故选B.
    【点睛】
    本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.
    3、A
    【解析】
    分式有意义时,分母a-4≠0
    【详解】
    依题意得:a−4≠0,
    解得a≠4.
    故选:A
    【点睛】
    此题考查分式有意义的条件,难度不大
    4、A
    【解析】
    分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.
    详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得: ,解得 ,∴y=-5x+500,
    当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.
    点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.
    5、B
    【解析】
    从左边看可以看到两个小正方形摞在一起,故选B.
    6、D
    【解析】
    解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左往右正方形个数为2,1,1,
    故选D.
    【点睛】
    本题考查几何体的三视图.
    7、A
    【解析】
    分析:根据绝对值的定义回答即可.
    详解:负数的绝对值等于它的相反数,

    故选A.
    点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.
    8、B
    【解析】
    试题分析:根据线段垂直平分线上的点到两端点的距离相等解答.
    解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
    故选B.
    点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.
    9、B
    【解析】
    试题分析:根据作图方法可得点P在第二象限角平分线上,
    则P点横纵坐标的和为0,即2a+b+1=0,
    ∴2a+b=﹣1.故选B.
    10、C
    【解析】
    过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.
    【详解】
    解:过点B作BD⊥x轴于点D,
    ∵∠ACO+∠BCD=90°,
    ∠OAC+∠ACO=90°,
    ∴∠OAC=∠BCD,
    在△ACO与△BCD中,
    ∴△ACO≌△BCD(AAS)
    ∴OC=BD,OA=CD,
    ∵A(0,2),C(1,0)
    ∴OD=3,BD=1,
    ∴B(3,1),
    ∴设反比例函数的解析式为y=,
    将B(3,1)代入y=,
    ∴k=3,
    ∴y=,
    ∴把y=2代入y=,
    ∴x=,
    当顶点A恰好落在该双曲线上时,
    此时点A移动了个单位长度,
    ∴C也移动了个单位长度,
    此时点C的对应点C′的坐标为(,0)
    故选:C.

    【点睛】
    本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、50°
    【解析】
    利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.
    【详解】
    ∵AB∥CD,
    ∴∠EFC=∠2=130°,
    ∴∠1=180°-∠EFC=50°,
    故答案为50°
    【点睛】
    本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
    12、1.1
    【解析】
    【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论.
    【详解】∵一组数据4,x,1,y,7,9的众数为1,
    ∴x,y中至少有一个是1,
    ∵一组数据4,x,1,y,7,9的平均数为6,
    ∴(4+x+1+y+7+9)=6,
    ∴x+y=11,
    ∴x,y中一个是1,另一个是6,
    ∴这组数为4,1,1,6,7,9,
    ∴这组数据的中位数是×(1+6)=1.1,
    故答案为:1.1.
    【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.
    13、1
    【解析】
    过点D作于点H,根等腰三角形的性质求得BD的长度,继而得到,结合三角形中位线定理求得EF的长度即可.
    【详解】
    解:如图,过点D作于点H,

    过点D作于点H,,

    又平行线间的距离是8,点D是AB的中点,

    在直角中,由勾股定理知,.
    点D是AB的中点,

    又点E、F分别是AC、BC的中点,
    是的中位线,

    故答案是:1.
    【点睛】
    考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH的长度.
    14、1或5.
    【解析】
    小正方形的高不变,根据面积即可求出小正方形平移的距离.
    【详解】
    解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,
    ①如图,小正方形平移距离为1厘米;

    ②如图,小正方形平移距离为4+1=5厘米.

    故答案为1或5,
    【点睛】
    此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.
    15、1
    【解析】
    利用△ACD∽△CBD,对应线段成比例就可以求出.
    【详解】
    ∵CD⊥AB,∠ACB=90°,
    ∴△ACD∽△CBD,
    ∴,
    ∴,
    ∴CD=1.
    【点睛】
    本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.
    16、18°
    【解析】
    试题分析:根据圆锥的展开图的圆心角计算法则可得:扇形的圆心角=×360°=90°,则θ=108°-90°=18°.
    考点:圆锥的展开图

    三、解答题(共8题,共72分)
    17、见解析
    【解析】
    (1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.
    【详解】
    (1)∵四边形ABCD是平行四边形,O是BD的中点,
    ∴AB∥DC,OB=OD,
    ∴∠OBE=∠ODF,
    又∵∠BOE=∠DOF,
    ∴△BOE≌△DOF(ASA),
    ∴EO=FO,
    ∴四边形BEDF是平行四边形;
    (2)EF⊥BD.
    ∵四边形BEDF是平行四边形,
    ∵EF⊥BD,
    ∴平行四边形BEDF是菱形.
    【点睛】
    本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.
    18、 (1)见解析;(2).
    【解析】
    分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
    (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
    详解:(1)连结OP、OA,OP交AD于E,如图,
    ∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
    ∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
    ∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
    ∴直线AB与⊙O相切;
    (2)连结BD,交AC于点F,如图,
    ∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
    ∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
    ∴DF=2,∴AD==2,∴AE=.
    在Rt△PAE中,tan∠1==,∴PE=.
    设⊙O的半径为R,则OE=R﹣,OA=R.
    在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
    ∴R=,即⊙O的半径为.

    点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
    19、(1)见解析;(2)
    【解析】
    分析: (1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.
    (2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.
    详解:
    (1)证明:如图,连接CO,

    ∵CD与⊙O相切于点C,
    ∴∠OCD=90°,
    ∵AB是圆O的直径,
    ∴∠ACB=90°,
    ∴∠ACO=∠BCD,
    ∵∠ACO=∠CAD,
    ∴∠CAD=∠BCD,
    在△ADC和△CDB中,

    ∴△ADC∽△CDB.
    (2)解:设CD为x,
    则AB=x,OC=OB=x,
    ∵∠OCD=90°,
    ∴OD===x,
    ∴BD=OD﹣OB=x﹣x=x,
    由(1)知,△ADC∽△CDB,
    ∴=,
    即,
    解得CB=1,
    ∴AB==,
    ∴⊙O半径是.
    点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.
    20、(1)见解析;(2);(3).
    【解析】
    (1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;
    (2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;
    (3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可.
    【详解】
    (1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,
    ∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,
    又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,
    且D在圆上,∴PD是⊙O的切线.
    (2)设∠A=x,
    ∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,
    在△ABD中,
    ∠A+∠ABD=90o,x=2x=90o,即x=30o,
    ∴∠DOB=60o,∴弧BD长.

    (3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,
    ∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,
    在Rt△BDF中,DF=,
    由△OMN∽△FDN得.
    【点睛】
    本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.
    21、 (1)详见解析;(2)10.
    【解析】
    ①只需证明两对对应角分别相等可得两个三角形相似;故.
    ②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.
    【详解】
    ①∵四边形ABCD是矩形,
    ∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.
    由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.
    ∴∠APO=90°.
    ∴∠APD=90°−∠CPO=∠POC.
    ∵∠D=∠C,∠APD=∠POC.
    ∴△OCP∽△PDA.
    ∴.
    ②∵△OCP与△PDA的面积比为1:4,
    ∴OCPD=OPPA=CPDA=14−−√=12.
    ∴PD=2OC,PA=2OP,DA=2CP.
    ∵AD=8,
    ∴CP=4,BC=8.
    设OP=x,则OB=x,CO=8−x.
    在△PCO中,
    ∵∠C=90∘,CP=4,OP=x,CO=8−x,
    ∴x2=(8−x)2+42.
    解得:x=5.
    ∴AB=AP=2OP=10.
    ∴边AB的长为10.
    【点睛】
    本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.
    22、(1); (2);(3)
    【解析】
    (1)联立两直线解析式,求出交点P坐标即可;
    (2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.
    (3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.
    【详解】
    解:(1)联立得:,解得:;
    ∴P的坐标为;
    (2)分两种情况考虑:
    当时,由F坐标为(a,0),得到OF=a,
    把E横坐标为a,代入得:即
    此时
    当时,重合的面积就是梯形面积,
    F点的横坐标为a,所以E点纵坐标为
    M点横坐标为:-3a+12,

    所以;
    (3)令中的y=0,解得:x=4,则A的坐标为(4,0)
    则AP= ,则PM=2
    又∵OP=
    ∴点P向左平移3个单位在向下平移可以得到M1
    点P向右平移3个单位在向上平移可以得到M2
    ∴A向左平移3个单位在向下平移可以得到 Q1(1,-)
    A向右平移3个单位在向上平移可以得到 Q1(7,)
    所以,存在Q点,且坐标是
    【点睛】
    本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
    23、(1);(2)详见解析;(3)为定值,=
    【解析】
    (1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),用待定系数法求解即可;
    (2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直线AB的解析式即可得到结论;
    (3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
    由PQ∥ON,可得ON=amt+at2,OM= –amt+at2,然后把ON,OM,OC的值代入整理即可.
    【详解】
    (1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),

    解之得

    ∴;
    (2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),

    ∵OA⊥OB,
    ∴∠AOE=∠OBF,
    ∴△AOE∽△OBF,
    ∴,,,
    直线AB过点A(m,am2)、点B(n,an2),
    ∴过点(0,);
    (3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
    ∵PQ∥ON,

    ∴,
    ON=====at(m+t)= amt+at2,
    同理:OM= –amt+at2,
    所以,OM+ON= 2at2=–2c=OC,
    所以,=.
    【点睛】
    本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.
    24、(1)抛物线的解析式为:;
    (2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
    ②存在.R点的坐标是(3,﹣);
    (3)M的坐标为(1,﹣).
    【解析】
    试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;
    (2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;
    (3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.
    试题解析:(1)设抛物线的解析式是y=ax2+bx+c,
    ∵正方形的边长2,
    ∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),
    把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
    解得a=,b=﹣,c=﹣2,
    ∴抛物线的解析式为:,
    答:抛物线的解析式为:;
    (2)①由图象知:PB=2﹣2t,BQ=t,
    ∴S=PQ2=PB2+BQ2,
    =(2﹣2t)2+t2,
    即S=5t2﹣8t+4(0≤t≤1).
    答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
    ②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
    ∵S=5t2﹣8t+4(0≤t≤1),
    ∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,
    解得t=,t=(不合题意,舍去),
    此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),
    若R点存在,分情况讨论:
    (i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,
    则R的横坐标为3,R的纵坐标为﹣,
    即R(3,﹣),
    代入,左右两边相等,
    ∴这时存在R(3,﹣)满足题意;

    (ii)假设R在QB的左边时,这时PR=QB,PR∥QB,
    则R(1,﹣)代入,,
    左右不相等,∴R不在抛物线上.(1分)
    综上所述,存点一点R(3,﹣)满足题意.
    答:存在,R点的坐标是(3,﹣);
    (3)如图,M′B=M′A,

    ∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,
    理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,
    ∴|MB|﹣|MD|<|DB|,
    即M到D、A的距离之差为|DB|时,差值最大,
    设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,
    解得:k=,b=﹣,
    ∴y=x﹣,
    抛物线的对称轴是x=1,
    把x=1代入得:y=﹣
    ∴M的坐标为(1,﹣);
    答:M的坐标为(1,﹣).
    考点:二次函数综合题.

    相关试卷

    2023年广西玉林市容县中考数学一模试卷(含解析): 这是一份2023年广西玉林市容县中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广西玉林市中考数学一模试卷(含解析): 这是一份2023年广西玉林市中考数学一模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广西玉林市玉州区中考数学一模试卷(含解析): 这是一份2023年广西玉林市玉州区中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map