2022届孝感市八校联谊重点达标名校中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.一次函数满足,且随的增大而减小,则此函数的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.已知,则的值是
A.60 B.64 C.66 D.72
3.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )
A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
4.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A.球不会过网 B.球会过球网但不会出界
C.球会过球网并会出界 D.无法确定
5.若关于x的分式方程的解为正数,则满足条件的正整数m的值为( )
A.1,2,3 B.1,2 C.1,3 D.2,3
6.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是
A. B. C. D.3
7.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是( )
A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α
8.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )
A. B. C. D.1
9.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为( )
A.60° B.65° C.70° D.75°
10.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成
一个圆锥(接缝处不重叠),那么这个圆锥的高为
A.6cm B.cm C.8cm D.cm
11.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为( )
A.0.72×106平方米 B.7.2×106平方米
C.72×104平方米 D.7.2×105平方米
12.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为( )
A.10° B.15° C.20° D.25°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.不等式组的最大整数解是__________.
14.计算:___.
15.已知一个正六边形的边心距为,则它的半径为______ .
16.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.
17.若关于x的二次函数y=ax2+a2的最小值为4,则a的值为______.
18.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
20.(6分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
21.(6分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.
已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案.
要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.
22.(8分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.
(1)求证:BD平分∠ABC;
(2)连接EC,若∠A=30°,DC=,求EC的长.
23.(8分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.
(1)求证:AD=CD;
(2)若AB=10,OE=3,求tan∠DBC的值.
24.(10分)已知抛物线y=ax2+bx+c.
(Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
①求该抛物线的解析式;
②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
(Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
25.(10分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?
26.(12分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:两次取出的小球标号相同;两次取出的小球标号的和等于4.
27.(12分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.
(1)求证:四边形OBCP是平行四边形;
(2)填空:
①当∠BOP= 时,四边形AOCP是菱形;
②连接BP,当∠ABP= 时,PC是⊙O的切线.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.
故选A.
考点:一次函数图象与系数的关系.
2、A
【解析】
将代入原式,计算可得.
【详解】
解:当时,
原式
,
故选A.
【点睛】
本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.
3、D
【解析】
首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
【详解】
解:
四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
,,
四边形是平行四边形(对边相互平行的四边形是平行四边形);
过点分别作,边上的高为,.则
(两纸条相同,纸条宽度相同);
平行四边形中,,即,
,即.故正确;
平行四边形为菱形(邻边相等的平行四边形是菱形).
,(菱形的对角相等),故正确;
,(平行四边形的对边相等),故正确;
如果四边形是矩形时,该等式成立.故不一定正确.
故选:.
【点睛】
本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
4、C
【解析】
分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.
详解:根据题意,将点A(0,2)代入
得:36a+2.6=2,
解得:
∴y与x的关系式为
当x=9时,
∴球能过球网,
当x=18时,
∴球会出界.
故选C.
点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.
5、C
【解析】
试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,
已知关于x的分式方的解为正数,得m=1,m=3,故选C.
考点:分式方程的解.
6、B
【解析】
如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.
【详解】
解:如图,AB的中点即数轴的原点O.
根据数轴可以得到点A表示的数是.
故选:B.
【点睛】
此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.
7、D
【解析】
利用旋转不变性即可解决问题.
【详解】
∵△DAE是由△BAC旋转得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正确,
故选D.
【点睛】
本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型.
8、B
【解析】
分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
详解: 由于点P在运动中保持∠APD=90°, ∴点P的路径是一段以AD为直径的弧,
设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
在Rt△QDC中,QC=, ∴CP=QC-QP=,故选B.
点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.
9、C
【解析】
由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.
【详解】
∵AD=CD,∠1=40°,
∴∠ACD=70°,
∵AB∥CD,
∴∠2=∠ACD=70°,
故选:C.
【点睛】
本题考查了等腰三角形的性质,平行线的性质,是基础题.
10、B
【解析】
试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,
∴留下的扇形的弧长==12π,
根据底面圆的周长等于扇形弧长,
∴圆锥的底面半径r==6cm,
∴圆锥的高为=3cm
故选B.
考点: 圆锥的计算.
11、D
【解析】
试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.
∴此题可记为1.2×105平方米.
考点:科学记数法
12、A
【解析】
先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.
【详解】
由图可得,∠CDE=40° ,∠C=90°,
∴∠CED=50°,
又∵DE∥AF,
∴∠CAF=50°,
∵∠BAC=60°,
∴∠BAF=60°−50°=10°,
故选A.
【点睛】
本题考查了平行线的性质,熟练掌握这一点是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.
【详解】
解:,
由不等式①得x≤1,
由不等式②得x>-1,
其解集是-1<x≤1,
所以整数解为0,1,1,
则该不等式组的最大整数解是x=1.
故答案为:1.
【点睛】
考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
14、
【解析】
直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.
【详解】
原式.
故答案为.
【点睛】
本题考查了实数运算,正确化简各数是解题的关键.
15、2
【解析】
试题分析:设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得OA.
解:如图所示,
在Rt△AOG中,OG=,∠AOG=30°,
∴OA=OG÷cos 30°=÷=2;
故答案为2.
点睛:本题主要考查正多边形和圆的关系. 解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.
16、2
【解析】
要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为6cm,圆柱高为2cm,
∴AB=2cm,BC=BC′=3cm,
∴AC2=22+32=13,
∴AC=cm,
∴这圈金属丝的周长最小为2AC=2cm.
故答案为2.
【点睛】
本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.
17、1.
【解析】
根据二次函数的性质列出不等式和等式,计算即可.
【详解】
解:∵关于x的二次函数y=ax1+a1的最小值为4,
∴a1=4,a>0,
解得,a=1,
故答案为1.
【点睛】
本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键.
18、.
【解析】
由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到△OAD的面积.
【详解】
∵点B的坐标为(2,3),点C为OB的中点,
∴C点坐标为(1,1.5),
∴k=1×1.5=1.5,即反比例函数解析式为y=,
∴S△OAD=×1.5=.
故答案为:.
【点睛】
本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)1 ;(1) y=x1﹣4x+1或y=x1+6x+1.
【解析】
(1)解方程求出点A的坐标,根据勾股定理计算即可;
(1)设新抛物线对应的函数表达式为:y=x1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.
【详解】
解:(1)由x1﹣4=0得,x1=﹣1,x1=1,
∵点A位于点B的左侧,
∴A(﹣1,0),
∵直线y=x+m经过点A,
∴﹣1+m=0,
解得,m=1,
∴点D的坐标为(0,1),
∴AD==1;
(1)设新抛物线对应的函数表达式为:y=x1+bx+1,
y=x1+bx+1=(x+)1+1﹣,
则点C′的坐标为(﹣,1﹣),
∵CC′平行于直线AD,且经过C(0,﹣4),
∴直线CC′的解析式为:y=x﹣4,
∴1﹣=﹣﹣4,
解得,b1=﹣4,b1=6,
∴新抛物线对应的函数表达式为:y=x1﹣4x+1或y=x1+6x+1.
【点睛】
本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.
20、(1);(2)
【解析】
(1)根据可能性只有男孩或女孩,直接得到其概率;
(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.
【详解】
解:(1)(1)第二个孩子是女孩的概率=;
故答案为;
(2)画树状图为:
共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,
所以至少有一个孩子是女孩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
21、(1)8m;(2)答案不唯一
【解析】
(1)根据入射角等于反射角可得 ∠APB=∠CPD ,由 AB⊥BD、CD⊥BD 可得到 ∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.
(2)设计成视角问题求古城墙的高度.
【详解】
(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,
∴Rt△ABP∽Rt△CDP,
∴ ,
∴CD==8.
答:该古城墙的高度为8m
(2)解:答案不唯一,如:如图,
在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,
过点D作DCAB于点C.在Rt△ACD中,∠ACD=90°,tanα=,
∴AC=α tanα,
∴AB=AC+BC=αtanα+h
【点睛】
本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
22、(1)见解析;(2).
【解析】
(1)直接利用直角三角形的性质得出,再利用DE∥BC,得出∠2=∠3,进而得出答案;
(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的长,进而得出EC的长.
【详解】
(1)证明:∵AD⊥DB,点E为AB的中点,
∴.
∴∠1=∠2.
∵DE∥BC,
∴∠2=∠3.
∴∠1=∠3.
∴BD平分∠ABC.
(2)解:∵AD⊥DB,∠A=30°,
∴∠1=60°.
∴∠3=∠2=60°.
∵∠BCD=90°,
∴∠4=30°.
∴∠CDE=∠2+∠4=90°.
在Rt△BCD中,∠3=60°,,
∴DB=2.
∵DE=BE,∠1=60°,
∴DE=DB=2.
∴.
【点睛】
此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.
23、(1)见解析;(2)tan∠DBC=.
【解析】
(1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到,从而有AD=CD;
(2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.
【详解】
(1)证明:∵AB为直径,
∴∠ACB=90°,
∵OD∥BC,
∴∠AEO=∠ACB=90°,
∴OE⊥AC,
∴,
∴AD=CD;
(2)解:∵AB=10,
∴OA=OD=5,
∴DE=OD﹣OE=5﹣3=2,
在Rt△OAE中,AE==4,
∴tan∠DAE=,
∵∠DAC=∠DBC,
∴tan∠DBC=.
【点睛】
垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.
24、(Ⅰ)①y=x2+3x②当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
【解析】
(I)①由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
【详解】
(I)①设抛物线的解析式为y=a(x+2)2﹣3,
∵抛物线经过点B(﹣3,0),
∴0=a(﹣3+2)2﹣3,
解得:a=1,
∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
②设直线AB的解析式为y=kx+m(k≠0),
将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
得:,解得:,
∴直线AB的解析式为y=﹣2x﹣2.
∵直线l与AB平行,且过原点,
∴直线l的解析式为y=﹣2x.
当点P在第二象限时,x<0,如图所示.
S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
∴S=S△POB+S△AOB=﹣3x+2(x<0).
∵3+6≤S≤6+2,
∴,即,
解得:≤x≤,
∴x的取值范围是≤x≤.
当点P′在第四象限时,x>0,
过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
∵S△ABE=×2×3=3,
∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
∵3+6≤S≤6+2,
∴,即,
解得:≤x≤,
∴x的取值范围为≤x≤.
综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
(II)ac≤1,理由如下:
∵当x=c时,y=0,
∴ac2+bc+c=0,
∵c>1,
∴ac+b+1=0,b=﹣ac﹣1.
由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
把x=0代入y=ax2+bx+c,得y=c,
∴抛物线与y轴的交点为(0,c).
∵a>0,
∴抛物线开口向上.
∵当0<x<c时,y>0,
∴抛物线的对称轴x=﹣≥c,
∴b≤﹣2ac.
∵b=﹣ac﹣1,
∴﹣ac﹣1≤﹣2ac,
∴ac≤1.
【点睛】
本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.
25、(1)购买A型学习用品400件,B型学习用品600件.(2)最多购买B型学习用品1件
【解析】
(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.
(2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,根据这批学习用品的钱不超过210元建立不等式求出其解即可.
【详解】
解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得
,解得:.
答:购买A型学习用品400件,B型学习用品600件.
(2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,由题意,得
20(1000﹣a)+30a≤210,
解得:a≤1.
答:最多购买B型学习用品1件
26、(1)(2)
【解析】
试题分析:首先根据题意进行列表,然后求出各事件的概率.
试题解析:
(1)P(两次取得小球的标号相同)=;
(2)P(两次取得小球的标号的和等于4)=.
考点:概率的计算.
27、 (1)见解析;(2)①120°;②45°
【解析】
(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;
(2)①证出OA=OP=PA,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;
②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.
【详解】
(1)∵PC∥AB,
∴∠PCM=∠OAM,∠CPM=∠AOM.
∵点M是OP的中点,
∴OM=PM,在△CPM和△AOM中,
,
∴△CPM≌△AOM(AAS),
∴PC=OA.
∵AB是半圆O的直径,
∴OA=OB,
∴PC=OB.
又PC∥AB,
∴四边形OBCP是平行四边形.
(2)①∵四边形AOCP是菱形,
∴OA=PA,
∵OA=OP,
∴OA=OP=PA,
∴△AOP是等边三角形,
∴∠A=∠AOP=60°,
∴∠BOP=120°;
故答案为120°;
②∵PC是⊙O的切线,
∴OP⊥PC,∠OPC=90°,
∵PC∥AB,
∴∠BOP=90°,
∵OP=OB,
∴△OBP是等腰直角三角形,
∴∠ABP=∠OPB=45°,
故答案为45°.
【点睛】
本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.
2022届孝感市八校联谊重点达标名校中考数学模拟精编试卷含解析: 这是一份2022届孝感市八校联谊重点达标名校中考数学模拟精编试卷含解析,共23页。
2022届孝感市八校联谊中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届孝感市八校联谊中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了答题时请按要求用笔,已知抛物线y=ax2﹣,下列运算结果是无理数的是,下列运算正确的是等内容,欢迎下载使用。
2022届金平区重点达标名校中考数学最后一模试卷含解析: 这是一份2022届金平区重点达标名校中考数学最后一模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,五名女生的体重等内容,欢迎下载使用。