![2022届云南省红河州建水县中考数学模拟预测试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13325050/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届云南省红河州建水县中考数学模拟预测试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13325050/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届云南省红河州建水县中考数学模拟预测试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13325050/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届云南省红河州建水县中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为( )
A.6 B.9 C.11 D.无法计算
2.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是( )
A.P1(0,0),P2(3,﹣4),P3(﹣4,3)
B.P1(﹣1,1),P2(﹣3,4),P3(4,3)
C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
3.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )
A. B. C. D.
4.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )
A. B. C. D
5.下列计算正确的是( )
A.a²+a²=a4 B.(-a2)3=a6
C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b
6.函数的自变量x的取值范围是( )
A.x>1 B.x<1 C.x≤1 D.x≥1
7.在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,所得抛物线的解析式是( ).
A. B.
C. D.
8.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()
A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1
9.若不等式组的整数解共有三个,则a的取值范围是( )
A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6
10.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为( )
A.(4030,1) B.(4029,﹣1)
C.(4033,1) D.(4035,﹣1)
11.第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )
A. B. C. D.
12.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).
14.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.
15.分解因式:a3﹣a=_____.
16.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.
17.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)
18.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知a2+2a=9,求的值.
20.(6分)先化简:,再请你选择一个合适的数作为x的值代入求值.
21.(6分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若,求⊙O的半径.
22.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(1)求∠BCD的度数.
(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)
23.(8分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.
求证:PE⊥PF.
24.(10分)如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
25.(10分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N.
(1)求点A、B的坐标;
(2)若BN=MN,且S△MBC=,求a的值;
(3)若∠BMC=2∠ABM,求的值.
26.(12分)已知函数y=(x>0)的图象与一次函数y=ax﹣2(a≠0)的图象交于点A(3,n).
(1)求实数a的值;
(2)设一次函数y=ax﹣2(a≠0)的图象与y轴交于点B,若点C在y轴上,且S△ABC=2S△AOB,求点C的坐标.
27.(12分)先化简:()÷,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.
【详解】
把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,
∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,
∴C、B、H'在一直线上,且AB为△ACH'的中线,
∴S△BEI=S△ABH′=S△ABC,
同理:S△CDF=S△ABC,
当∠BAC=90°时,
S△ABC的面积最大,
S△BEI=S△CDF=S△ABC最大,
∵∠ABC=∠CBG=∠ABI=90°,
∴∠GBE=90°,
∴S△GBI=S△ABC,
所以阴影部分面积之和为S△ABC的3倍,
又∵AB=2,AC=3,
∴图中阴影部分的最大面积为3× ×2×3=9,
故选B.
【点睛】
本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.
2、D
【解析】
把点P的横坐标减4,纵坐标减3可得P1的坐标;
让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;
让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.
【详解】
∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).
∵点P关于y轴的对称点是P2,∴P2(﹣3,4).
∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).
故选D.
【点睛】
本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).
3、C
【解析】
【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.
【详解】画树状图为:
共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,
所以两次抽取的卡片上数字之积为偶数的概率=,
故选C.
【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
4、D
【解析】
先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
【详解】
由题意得,2x+y=10,
所以,y=-2x+10,
由三角形的三边关系得,,
解不等式①得,x>2.5,
解不等式②的,x<5,
所以,不等式组的解集是2.5<x<5,
正确反映y与x之间函数关系的图象是D选项图象.
故选:D.
5、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
A、原式=2a2,不符合题意;
B、原式=-a6,不符合题意;
C、原式=a2+2ab+b2,不符合题意;
D、原式=-4b,符合题意,
故选:D.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
6、C
【解析】
试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
试题解析:根据题意得:1-x≥0,
解得:x≤1.
故选C.
考点:函数自变量的取值范围.
7、B
【解析】
把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.
【详解】
解:∵y=x2+2x+3=(x+1)2+2,
∴原抛物线的顶点坐标为(-1,2),
令x=0,则y=3,
∴抛物线与y轴的交点坐标为(0,3),
∵抛物线绕与y轴的交点旋转180°,
∴所得抛物线的顶点坐标为(1,4),
∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].
故选:B.
【点睛】
本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.
8、B
【解析】
∵观察可知:左边三角形的数字规律为:1,2,…,n,
右边三角形的数字规律为:2,,…,,
下边三角形的数字规律为:1+2,,…,,
∴最后一个三角形中y与n之间的关系式是y=2n+n.
故选B.
【点睛】
考点:规律型:数字的变化类.
9、C
【解析】
首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解不等式组得:2<x≤a,
∵不等式组的整数解共有3个,
∴这3个是3,4,5,因而5≤a<1.
故选C.
【点睛】
本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
10、D
【解析】
根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决.
【详解】
解:由题意可得,
点P1(1,1),点P2(3,-1),点P3(5,1),
∴P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,
即P2018的坐标为(4035,-1),
故选:D.
【点睛】
本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.
11、B
【解析】
先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.
【详解】
∵有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,
∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.
故选B.
【点睛】
本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.
12、B
【解析】
根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中 cos∠BCD=,可得BC=.
故选B.
点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
考点:弧长的计算;正多边形和圆.
分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.
解:方法一:
先求出正六边形的每一个内角==120°,
所得到的三条弧的长度之和=3×=2πcm;
方法二:先求出正六边形的每一个外角为60°,
得正六边形的每一个内角120°,
每条弧的度数为120°,
三条弧可拼成一整圆,其三条弧的长度之和为2πcm.
14、(2,0)
【解析】
【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.
【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,
∵A(m,﹣3)和点B(﹣1,n),
∴OE=1,AF=3,
∵∠ACB=45°,
∴∠APB=90°,
∴∠BPE+∠APF=90°,
∵∠BPE+∠EBP=90°,
∴∠APF=∠EBP,
∵∠BEP=∠AFP=90°,PA=PB,
∴△BPE≌△PAF,
∴PE=AF=3,
设P(a,0),
∴a+1=3,
a=2,
∴P(2,0),
故答案为(2,0).
【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.
15、a(a+1)(a﹣1)
【解析】
解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).
16、1
【解析】
利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可.
【详解】
a2+b2﹣8a﹣4b+20=0,
a2﹣8a+16+b2﹣4b+4=0,
(a﹣4)2+(b﹣2)2=0
a﹣4=0,b﹣2=0,
a=4,b=2,
则a2﹣b2=16﹣4=1,
故答案为1.
【点睛】
本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.
17、60
【解析】
根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.
【详解】
∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米, ∴BD=,CD=,
∴+=100, 解得,AD≈60
考点:解直角三角形的应用.
18、
【解析】
解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、,.
【解析】
试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.
试题解析:
= = =,
∵a2+2a=9,
∴(a+1)2=1.
∴原式=.
20、x﹣1,1.
【解析】
先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可.
【详解】
解:原式==x﹣1,
根据分式的意义可知,x≠0,且x≠±1,
当x=2时,原式=2﹣1=1.
【点睛】
本题主要考查分式的化简求值,化简过程中要注意运算顺序,化简结果是最简形式,难点在于当未知数的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为零.
21、(1)证明见解析;(2)1.
【解析】
(1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;
(2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.
【详解】
解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,
∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,
∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,
∴AB=AC;
(2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,
在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,
∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,
则⊙O的半径为1.
【点睛】
本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.
22、(1)38°;(2)20.4m.
【解析】
(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;
(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.
【详解】
(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;
(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.
【点睛】
本题考查了解直角三角形的应用﹣仰角俯角问题,正确添加辅助线构建直角三角形、熟练掌握和灵活运用相关知识是解题的关键.
23、证明见解析.
【解析】
由圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点,继而可得EM=EN,即可证得:PE⊥PF.
【详解】
∵四边形内接于圆,
∴,
∵平分,
∴,
∵,,
∴,
∴,
∵平分,
∴.
【点睛】
此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用.
24、(1)45°;(2)见解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.
【解析】
(1)易得△ABC是等腰直角三角形,从而∠BAC=∠CBA=45°;
(2)分当 B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解;
(3)①先说明四边形OHEF是正方形,再利用△DOH∽△DFE求出EF的长,然后利用割补法求面积;
②根据△EPC∽△EBA可求PC=4,根据△PDC∽△PCA可求PD •PA=PC2=16,再根据S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解.
【详解】
(1)解:(1)连接BC,
∵AB是直径,
∴∠ACB=90°.
∴△ABC是等腰直角三角形,
∴∠BAC=∠CBA=45°;
(2)解:∵,
∴∠CDB=∠CDP=45°,CB= CA,
∴CD平分∠BDP
又∵CD⊥BP,
∴BE=EP,
即CD是PB的中垂线,
∴CP=CB= CA,
(3)① (Ⅰ)如图2,当 B在PA的中垂线上,且P在右时,∠ACD=15°;
(Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;
(Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;
(Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°
②(Ⅰ)如图6, ,
.
(Ⅱ)如图7, ,
,
.
,
.
,
,
,
.
设BD=9k,PD=2k,
,
,
,
.
【点睛】
本题是圆的综合题,熟练掌握30°角所对的直角边等于斜边的一半,平行线的性质,垂直平分线的性质,相似三角形的判定与性质,圆周角定理,圆内接四边形的性质,勾股定理,同底等高的三角形的面积相等是解答本题的关键.
25、(1)A(﹣4,0),B(3,0);(2);(3).
【解析】
(1)设y=0,可求x的值,即求A,B的坐标;
(2)作MD⊥x轴,由CO∥MD可得OD=3,把x=-3代入解析式可得M点坐标,可得ON的长度,根据S△BMC=,可求a的值;
(3)过M点作ME∥AB,设NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M点坐标,代入可得k,m,a的关系式,由CO=2km+m=-12a,可得方程组,解得k,即可求结果.
【详解】
(1)设y=0,则0=ax2+ax﹣12a (a<0),
∴x1=﹣4,x2=3,
∴A(﹣4,0),B(3,0)
(2)如图1,作MD⊥x轴,
∵MD⊥x轴,OC⊥x轴,
∴MD∥OC,
∴=且NB=MN,
∴OB=OD=3,
∴D(﹣3,0),
∴当x=﹣3时,y=﹣6a,
∴M(﹣3,﹣6a),
∴MD=﹣6a,
∵ON∥MD
∴,
∴ON=﹣3a,
根据题意得:C(0,﹣12a),
∵S△MBC=,
∴(﹣12a+3a)×6=,
a=﹣,
(3)如图2:过M点作ME∥AB,
∵ME∥AB,
∴∠EMB=∠ABM且∠CMB=2∠ABM,
∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,
∴△CME≌△MNE,
∴CE=EN,
设NO=m,=k(k>0),
∵ME∥AB,
∴==k,
∴ME=3k,EN=km=CE,
∴EO=km+m,
CO=CE+EN+ON=2km+m=﹣12a,
即,
∴M(﹣3k,km+m),
∴km+m=a(9k2﹣3k﹣12),
(k+1)×=(k+1)(9k﹣12),
∴=9k-12,
∴k=,
∴.
【点睛】
本题考查的知识点是函数解析式的求法,二次函数的图象和性质,是二次函数与解析几何知识的综合应用,难度较大.
26、(1)a=1;(2)C(0,﹣4)或(0,0).
【解析】
(1)把 A(3,n)代入y=(x>0)求得 n 的值,即可得A点坐标, 再把A点坐标代入一次函数 y=ax﹣2 可得 a 的值;(2)先求出一次函数 y=ax﹣2(a≠0)的图象与 y 轴交点 B 的坐标,再分两种情况(①当C点在y轴的正半轴上或原点时;②当C点在y轴的负半轴上时)求点C的坐标即可.
【详解】
(1)∵函数 y=(x>0)的图象过(3,n),
∴3n=3,
n=1,
∴A(3,1)
∵一次函数 y=ax﹣2(a≠0)的图象过点 A(3,1),
∴1=3a﹣1, 解得 a=1;
(2)∵一次函数y=ax﹣2(a≠0)的图象与 y 轴交于点 B,
∴B(0,﹣2),
①当C点在y轴的正半轴上或原点时, 设 C(0,m),
∵S△ABC=2S△AOB,
∴×(m+2)×3=2××3, 解得:m=0,
②当C点在 y 轴的负半轴上时, 设(0,h),
∵S△ABC=2S△AOB,
∴×(﹣2﹣h)×3=2××3, 解得:h=﹣4,
∴C(0,﹣4)或(0,0).
【点睛】
本题主要考查了一次函数与反比例函数交点问题,解决第(2)问时要注意分类讨论,不要漏解.
27、,1.
【解析】
先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.
【详解】
原式=•
=•
=.
∵由题意,x不能取1,﹣1,﹣2,∴x取2.
当x=2时,原式===1.
【点睛】
本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键.
2023年云南省红河州中考数学模拟冲刺复习: 这是一份2023年云南省红河州中考数学模拟冲刺复习,共5页。
云南省红河州建水县重点名校2021-2022学年中考数学模拟预测题含解析: 这是一份云南省红河州建水县重点名校2021-2022学年中考数学模拟预测题含解析,共17页。试卷主要包含了下列运算正确的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。
云南省红河州2021-2022学年中考数学模拟预测试卷含解析: 这是一份云南省红河州2021-2022学年中考数学模拟预测试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,若,则x-y的正确结果是,下列各式中,正确的是,下列计算正确的是.等内容,欢迎下载使用。